
	 1	

V. Krasnoholovets and I. Gandzha, A modeling of proton polaron spectra in crystals with dense 
network of hydrogen bonds, International Journal of Chemical Modeling 7, No. 1, 9-16 (2015). 
 

 
A modeling of proton polaron spectra in crystals with  

a dense network of hydrogen bonds 
 

V. Krasnoholovets* and I. Gandzha 
 

Institute of Physics, National Academy of Sciences of Ukraine, 
Stohna Nauky 46, UA-03028 Kyiv, Ukraine 

*)	corresponding	author,	e-mail:	krasnoh@iop.kiev.ua 
 
 

Abstract 
      
       In this chapter we model a possible behavior of the coefficient of absorption of proton 
polaron in a compound with a dense network of hydrogen bonds when a polaron interacts 
rather with local vibrating atoms than with the whole crystal lattice (i.e. crystal polarized 
optical phonons). Peculiarities of the manifestation of polarons in Raman and infrared spectra 
are discussed.  
 

 
 
 
 
1. Introduction 
   
      Polarons can manifest themselves in experiments on conductivity. Namely, proton 
conductivity, which is characterized by a barrier of activation energy, directly points out to 
the presence of proton polarons in the crystal studied (see, e.g. Ref. 1). 
      In principle, the polaron formation means that a quasi-free proton strongly interacts with 
the crystal lattice, which results in a coupling of the proton with a few optical polar modes. 
Usually these modes fall with a range 1-100 cm-1. However, this is correct rather for crystals 
with complicated structure [2] in which hydrogen bonds do not form a frame over the whole 
crystal. In the case of crystals in which hydrogen bonds form a dense network, a proton in the 
polaron state can be bound rather not with the whole crystal, but only with local atoms that 
participate in local vibrations whose frequencies vary from 1000 to 2000 cm-1.  If this takes 
place then such a polaron should be active in the appropriate spectral band of the Raman and 
infrared spectra.  
     The most power methods of investigation of the crystal structure and properties are the 
Raman and infrared spectroscopy, and the inelastic neutron spectra. In crystals with hydrogen 
bonds, especially O-H bonds active O-H stretching mode appears in the region between 1000 
cm-1 to 2200 cm-1 displaying effects of different intensity in a wide temperature interval. 
These changes of intensity depend upon the polarization of the respective features. The 
differences in temperature sensitivity of components of the O-H stretching vibrations suggest 
a separation of the polarized spectra into groups dependent on tensor components. On cooling 
peaks in the spectra loose their intensity.  
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      Infrared spectra reflect oscillations of polar molecules and their binding: the molecules 
absorb specific frequencies that are characteristic of their structure. The Raman effect occurs 
when a photon excites the molecule in either the ground rovibronic state or an excited 
rovibronic state; the molecule experiences an inelastic influence on the side of an incident 
photon and is transferred to a virtual high energy state for a short period of time. 
     There are libraries of tens of thousands of spectra of different compounds. But in newly 
synthesized compounds one may observe a few new maxima. Could they be associated with 
the formation of proton polarons? To answer the question we shall calculate the coefficient of 
absorption of the polaron and study it at different conditions, first of all as a function of 
temperature. In the polaron problem the energy of activation depends on temperature and 
decreases when the temperature is going down. Hence in Raman and infrared spectra the 
maximums associated with polarons have to increase with cooling.  
 
2. The coefficient of absorption of polaron 
  
      A self-trapped state of hydrogen should be specified with a binding energy that 
significantly exceeds the thermal energy . Such a situation is typical for the theory of 
small proton polaron, when a proton strongly interacts with polar optical phonons and/or local 
polar oscillations of the crystal in general. The activation of a jump of the binding proton 
requires an activation energy  that can reasonable be associated with the mentioned 
binding energy of hydrogen. In the considered case the polaron is bound with local atoms 
rather than with the whole crystal lattice; nevertheless, in the present case we also anticipate 
that the inequality  should be hold.  
      Raman spectra record among other effects also inelastic light scattering by the proton 
polaron that is perceived by an incident laser light as a single quasi-molecule. So in the 
Raman spectra of the compound studied there should be maximums associated with the 
excitation of the polaron as the whole, i.e. like a “molecule” (the hydrogen joined with 
surrounded atoms), namely, the polaron gets excited to an excited level and then come back to 
one of the nearest based sublevels.  
        In a range of frequencies lower 2000 cm-1 there is a possible interaction of local 
vibrations with acoustic phonons. In such a case acoustic phonons may pump an additional 
energy to support the polaron state. Such kind of an interaction may result in a shift of the 
polaron maximum(s) with cooling in the Raman spectra.  
      Close to 2000 cm-1 the local mode-acoustic interaction should be weakening owing to a 
bigger difference in frequencies. Hence, in the vicinity of 2000 cm-1 the polaron might rather 
be active in infrared spectra. In this case the polaron will absorb a photon experiencing a 
transfer to an upper level in the polaron potential well.  
         Let us consider the behavior of the proton polaron theoretically. In the polaron problem, 
the initial Hamiltonian can be written as follows [2] 
 
                                              (1) 
 

                                                                    (2) 

 
                                                                             (3) 

kBT

Eact

Eact >> kBT

tun0
ˆˆˆ HHH +=

( )
[ ]qq

n
q

qq
q

q

qq aaaa
a

a

aa
a

a

w

w

bubuaa

bbaaEH

ll
l

ll

ll
l

l

ˆ)(ˆ)(ˆˆ

ˆˆˆˆˆ

,

2
1

,
0

+-

++=

++

++

åå

åå

!

!

( )llll
l

ll aaaaMH ˆˆˆˆˆ
,tun

+
¢¢

+
¢ +=å



	 3	

 
where  is the Hamiltonian that includes the bond energy  of a proton in the th 
equilibrium position between oxygen atoms O ××× O (i.e. 	is the energy of an inner proton 
polaronic configuration – the lth level – in the one-minimum proton potential well) the energy 
of the lattice phonons, and the interaction of the proton with the lattice and its optical 
phonons;  is the tunneling Hamiltonian that provides for proton transfer between 
positions l and  in the same O ××× O bonding.  is the Fermi operator of creation 
(annihilation) of hydrogen atom in the lth position;  is the Bose operator of creation 
(annihilation) of the lattice polarized optical phonons, which belong to the ath branch, with 
the energy  and the wave vector q; , where  is the 
dimensionless value that characterizes the displacement of the pair of oxygen atoms O ××× O, 
which form the hydrogen bond, from their initial equilibrium position due to the appearance 
of the hydrogen atom between them. The transfer matrix element in expression (3) is 
determined as  
 
                                                                      (4) 

 
where W is the potential in the hydrogen bond, which specified two possible position of a 
hydrogen atom;  and  are wav functions of the hydrogen atom, which are localized at 
the aforementioned positions.  

The operator of proton transfer density between the two different positions in the 
hydrogen bond is  
 

           (5) 

 
where  is the position/coordinate of hydrogen and  s the effective volume occupied by the 
hydrogen atom in the O ××× O bond.  

The equation of motion for the statistical operator, which describes the system studied, is 
 

             (6) 

 
Putting for the undisturbed statistical operator  
 

                                                      (7) 

 
The correction to  caused by the interaction Hamiltonian (3) is 
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Expressions (5) and (8) allow one to calculate the flow of protons/hydrogen atoms, or transfer 
density of hydrogen atoms/protons (the dimensionality is s-1m-2) 
 

         (9) 
 

In the explicit form  
 

                     (10) 

 
where  n is the concentration of hydrogen atoms in the crystal, 	is the distance 
between two equilibrium positions of hydrogen atom in the hydrogen bond, and 

 is the coupling constant of the hydrogen with the crystal lattice; 
 is the resonance integral (4); the activation energy is   

             
                         

                            (11) 
 

 
Thus, we have derived the expression (10) that describes the motion of hydrogen from one 
equilibrium position to another in the hydrogen bond, which is caused by the difference in the 
bound energy of the hydrogen,  and  in these two positions.  

What is the energy spectrum of such hydrogen bond? The easiest way is to construct the 
Green function for a hydrogen/proton located between the pair of oxygen atoms O ××× O. The 
singularity of Green function discloses the spectrum of the system of interest, which in our 
case is associated with the spectrum of the O – H××× O bound in the OADH crystal. The 
equation for the Green function in Fourier presentation is [2] (see, also e.g. Refs. 3 to 5)  
 

                                                 (12) 
 
where  is the one-particle Green function and  is the transfer matrix. In the first 
approximation Eq. (12) is simplified as below  
 

                                                  (13) 
 
The coefficient of absorption  can immediately be derived from this equation, 
 

                                     (14) 

 
where  is the function proportional to the magnitude of an induced dipole moment of  a 
proton polaron, which provides the transition of the polaron to an excited level. The transfer 
matrix  includes only contribution from the non-diagonal product of Fermi operators , 
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i.e. correlator . The correlator is calculated as the average by quantum mechanical 

and thermodynamic operators, i.e.  and  and the statistical operator (7), and hence it is 
directly associated with are the transfer density of protons (10), namely,  
 

                                                  (15) 

 
where we add the index  to the correlator, which specifies the th optical branch that 
interacts with the hydrogen.  
        Acoustic phonons have also to affect the vibrating hydrogen (bound with O), which has 
to affect the coefficient of absorption . Namely, due to the local and acoustic vibrations 
the frequency of polaron changes in the first approximation as follows , 
where the correction  is caused by the interaction of local oscillations with acoustic 
phonons, ; here,  is the dimensionless function of the phonon-phonon 
interaction and  is the Bose operator of creation (annihilation) of an acoustic phonon. 
Thermodynamic averaging results in  
 

                                (16) 

 
Thus the introduction of the interaction with acoustic phonons changes the expression for the 
coefficient of absorption (14) preserving only linear terms by  as follows 
 

                                                                (17) 

 
where the contribution on the side of acoustic phonons  is defined in expression (16) and 
the polaron correlator  is determined in expression (15). Anharmonism associated 

with the introduction of acoustic should also influence the correlator (15), however, this adds 
secondary effects that weakly influence the final result. 
       Let us calculation a numerical value of the absorption coefficient  (17) at 
temperatures 300 and 10 K.  Let the maximum of polaron be found at 1300 cm-1 at 300 K and 
at 1400 cm-1 at 10 K and let the maximum in an acoustic band be found at 50 cm-1.  Fig. 1 
exhibits the behavior of the coefficient  where  near the frequencies 

 cm-1 and  cm-1, respectively. The values of the parameters are shown in 
the legend to Fig. 1. As is seen, the maximum 1400 cm-1 shifts when the temperature is going 
down, which is caused by the interaction with the 50 cm-1 acoustic mode. Note the value of 
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the coefficient  is growing when the temperature decreases, which is typical for the 
polaron problem.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Calculated band at the maximum 1300 cm-1 by expression (17). ; ;  
 cm-1;  cm-1;  and  cm-1.  

 
 
      The behavior of band 2200 cm-1 is different, because this is a case of a higher frequency 
when the appropriate local mode is not affected by acoustic phonons. In this case the intensity 
of the maximum, i.e. the coefficient of adsorption (17), practically does not depend on 
acoustic component  when the temperature is decreasing. Fig. 2 demonstrates that in the 
case of the high frequency mode 2200 cm-1, the full polaron effect is not manifested at a low 
temperature, 10 K. This is because its power is not enough: the intensity of the maximum 
does not increase with decrease of T. However, in this case we may anticipate that the 
hydrogen atom being in the polaron state becomes to interact also with a polar environment, 
which will result in a broadening of the absorption band (i.e.,  cm-1 may increase, for 
example, to  cm-1). 
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Fig. 2. Calculated band of absorption of OADH at the maximum 2200 cm-1 by expression 
(17). ,  ,  200 cm-1,  cm-1.  
 
 
 
       The behavior of each band is asymmetric and each band drops faster at a higher 
frequency wing. The shape of the curve  is sensitive to the parameters ,   and 

. 
      Nevertheless, in addition to recorded spectra one should study the proton conductivity of 
the crystal in question at which the energy of activation (11) has to manifests itself directly. 
This additional characteristic will allow one to estimate correctly the major parameters of the 
polaron, first of all the polaron coupling constant . 
 
 
3. Conclusion 
 
     The modeling of proton polaron spectrum would be applicable to a specific compound 
with a wide net of hydrogen bonds. Of course new effects may also manifest themselves; by 
the polaron effect must be dominated in all the spectra.  
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