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Abstract 

 

Real physical space, as a purely mathematical structure formed according to the rules of set 

theory, topology, and fractal geometry, was proposed by Michel Bounias (1943–2003) and the 

author. It emerges as a mathematical lattice of primary topological balls, which was named a 

tessellattice, and the size of a cell/ball in the tessellattice is comparative with the Planck length, 

~10-35 m. Discrete fractal properties of the tessellattice allow the prediction of scales at which 

submicroscopic to cosmic structures should occur. This approach allows the development of a 

submicroscopic concept of physics, which describes Nature at a much deeper level than offered 

by the quantum-mechanical formalism developed at the atom scale, ~10-10 m. In addition, the 

approach makes it possible to define such fundamental physical notions as mass and charge from 

first submicroscopic principles, and this actually means that fundamental mathematics lays down 

the basic concepts of physics. 
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1. Introduction 

 

As known, in classical mechanics, the state of a particle is precisely defined, and all observable 

quantities have exact values. Although in the gravitation physics an important role plays spacetime, 

which in the formalism of general relativity is a smooth manifold with a pseudo-Riemannian metric 

𝑑𝑠2 = ∑   
𝛼𝛽

𝑔𝛼𝛽 𝑑𝑥𝛼𝑑𝑥𝛽 of signature (+, −, −, −), so gravitation was reduced to the examination of 

the curvature of spacetime.  

In the quantum mechanical formalism we meet a wave-particle duality, wavefunction 𝜓, and the 

quantum system is described mathematically by using a complex separable Hilbert space. Particle 

physics is based on the strong and weak interactions, quantum field theory, and quantum 

chromodynamics (the latter also largely covering the physics of nuclear interactions). In addition, 

particle physics relies heavily on the mathematical apparatus of symmetry groups.  

From this we can see that each of the named branches of physics is practically unrelated to the 

other, however, theoretical particle physicists have lumped them all together... 

Physicists perceive topology as a mathematical discipline that studies shapes and their 

arrangement in space and it is applicable for the evaluation of properties of systems, in particular, 

geometrical objects that remain unchanged as the system is continuously bent, twisted, or otherwise 

deformed. Topology has come to be recognized as being of an indispensable tool in particle physics, 

solid state physics and optics [1]. In particle physics,  researchers construct topological models of 

particle-like continuous fields, study topological effects in quantum field theories focusing on 

phenomenological applications in which abstract objects (like the Higgs particle with a certain 

symmetry) are endowed with a peculiar topology [2]. 

A valid question arises: Is it possible to link the various named branches of physics into one 

single structure, which will also be consistent with topology? Perhaps the answer will be positive if 

we first construct physical space, and only then derive physics from it.  But physical space should be 

inextricably linked with topology that studies the behaviour of spatial objects. So, in this case, we 

will be able to solve another problem – to derive physics from space, taking into account its 

topology. 

In his recent work, Maudlin [3] has developed a theory of linear structures (as collection of lines 

or directed lines), which in his opinion should provide a new mathematical tool for understanding 

geometrical structure, which so far has been described by the open set structure of a physical space 

that is determined by a collection of open sets.  

Nevertheless, much deeper views on the geometry of the universe were expressed early by 

Mortensen and Nerlich [4]. Their approach does not deny sets and a physical interval has been  

considered to be a whole whose point-parts are all the members of a set which is the image under the 

one-one correspondence of some real number interval. Density of an interval is straightforward: 

between any two points of the interval is a third. The universe is dense iff every interval is dense. 
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They show that every set, which can be made up from existing objects, exists and hence we need 

some explanation for just why these objects are. They tried to contemplate how matter could 

continuously occupy space in which a piece of matter is continuous and connected because it is made 

up of points of matter, and there is a continuous and connected physical interval such that every 

matter-point is at some spatial point of the interval, and every point of the interval has a point of 

matter at it.  Thereby, physical topology was treated as the relatedness of points, not the existence of 

certain sets of ordered pairs and hence the topological properties of a matter were inspected as 

derivative from the topological properties of the space in which the matter is embedded. 

Research of the constitution of real physical space carried out by Michel Bounias and the author 

[5–9], made it possible to completely replace the vague concept of the physical vacuum (and the 

mechanical ether preceding it) with a certain primary substrate from which particles arise and which 

has a clear mathematical structure and is determined by explicit fundamental laws of Nature. The 

main mathematical disciplines laid as the basis of the research were set theory, topology and fractal 

geometry.  

This paper discusses topological features of ordinary physical space as they arise from pure 

mathematical constructions. There is no doubt that the proposed approach is correct, as it enables the 

direct derivation of the Standard Model of particle physics (with the necessary corrections) and 

quantum mechanics from truly first principles. Moreover, the approach was experimentally verified 

[9] and even several technologies were implemented (see, e.g. Refs. [10, 11]).   

 

2. Main concepts 

 

First of all, we have to recall that an elementary particle can be created in any point of the 

universe. At the same time all such points take part in the formation of distances between physical 

objects. Therefore, this denotes that physical space is made of {objects + distances} and all comes 

from the same origin: manifold of sets. Hence, the association of discrete sets whose interior is 

continuous although covered by discrete subparts (micro), as derived from the empty set ∅ provides 

a wonderfully organized fundamental ‘substrate’, i.e., a mathematical lattice. 

Let us now consider the notions of measure and distances in a broad topological sense that 

includes also the assessment of the dimensionality of a space.  

 

2.1. Measure 

 

Usually, a measure is a comparison of the measured object with some unit taken as a standard, 

nevertheless, sets or spaces and functions are measurable under other conditions.   

A mapping 𝑓 of a set 𝐸 into a topological space 𝑇 is measurable if the reciprocal image of an 

open of 𝑇 by 𝑓 is measurable in 𝐸. And a set measure on 𝐸 is a mapping 𝓂 of a tribe 𝐵 of sets of 𝐸 
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in the interval [0, ∞], exhibiting denumerable additivity for any sequence of disjoint subsets (𝑏𝑛) of 

𝐵, and denumerable finiteness, i.e., the following correspondence must be fulfilled:  

 

                                                𝓂(⋃ 𝑏𝑛

 
∞ 
𝑛=0

) = ⋃ 𝓂(𝑏𝑛)∞ 
𝑛=0

                                         (1) 

 

where ∃ 𝑏𝑛,  𝑏𝑛 ∈ 𝐵,  𝐸 =∪ 𝑏𝑛,  ∀∈ N,  𝓂(𝑏𝑛) are finite. 

In such a case a unit of measure that plays the role of a standard is the part subordinated to a 

gauge (𝐽). Usually a gauge having non-zero real values is a function defined on all bound sets of the 

considered space and following Tricot [12] it has the subsequent properties: 

➢ a singleton has measure naught: ∀𝑥, 𝐽({𝑥}) = 0; 

➢ (𝐽) is continued with respect to the Hausdorff distance;   

➢ (𝐽) is growing: 𝐸 ⊂ 𝐹 ⟹ 𝐽(𝐸) ⊂ 𝐽(𝐹); 

➢ (𝐽) is linear:  𝐹(𝑟 ∙ 𝐸) ∶ 𝑟 ∙ 𝐽(𝐸).  

Therefore,  in topology the concept of distance is defined: usually, a diameter/size or a deviation 

are used and such distances one can apply on fully ordered sets. 

The Jordan and Lebesgue measures demand respective mappings (𝐼) and (𝑚∗) on spaces that 

must be provided with ∩, ∪ and ∁. Bounias and Bonaly [13] showed that in spaces of the ℝ𝑛 type, in 

addition to the mentioned rules a tessellation of balls should be involved. This means that a distance 

to be available for the measure of diameters of intervals.  

A set of measure naught was defined by Borel (1912) first as a linear set (𝐸); all points of 𝐸 are 

contained in intervals whose sum is lower than (𝑒) (some more detail see in Ref. [5]). 

 

2.1. Distances 

 

Now we can consider distances. Following Borel, the length of an interval 𝐹 = [𝑎, 𝑏] is      

                                          

                                                    𝐿(𝐹) = (𝑎 − 𝑏) − ∑ 𝐿(𝐶𝑛)𝑛                                              (2) 

 

where 𝐶𝑛 are the open intervals in the fundamental segment.  

The distance (2) is required in the Hausdorff distances of sets (𝐸) and (𝐹). Let E(e) and F(e) are 

the covers of 𝐸 or 𝐹 by balls 𝐵(𝑥, 𝑒), respectively, where 𝑥 ∈ 𝐸  or 𝑥 ∈ 𝐹. So,  the distance is: 

                                distH(𝐸, 𝐹) = inf {𝑒 ∶  𝐸 ⊂ 𝐹(𝑒) ∧  𝐹 ⊂ 𝐸(𝑒)},                           (3) 

                                distH(𝐸, 𝐹) = (𝑥 ⊂  𝐸, 𝑦 ⊂ 𝐹 ∶ inf dist(𝑥, 𝑦 )).                          (4) 
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Such a distance is not necessarily compatible with topological properties of the concerned spaces, 

nevertheless, the intervals can be replaced by topological balls. A more general approach may 

involve a path 𝜑(𝑥, 𝑦).  

Bounias [13–18] proved that in a partly ordered space, for sets 𝐴 and 𝐵 the symmetric difference  

∆(𝐴, 𝐵) = ∁𝐴∪𝐵(𝐴 ∩ 𝐵)  to be a true distance that is holding for more than two sets. If  𝐴 ∪ 𝐵 = ∅, 

the distance remains ∆ = 𝐴 ∪ 𝐵. If 𝐴 ∪ 𝐵 = ∅ and (𝐴, 𝐵) ⊂ 𝐸, the distance remains ∆= 𝐴 ∪ 𝐵. 

In a general case, a distance between spaces 𝐴, 𝐵 within their common embedding space E is 

issued by the intersection of a path-set 𝜑(𝐴, 𝐵) joining members of 𝐴 to members of 𝐵 with the 

complementary ∁𝐴∪𝐵, such that the path 𝜑(𝐴, 𝐵)  is a continued sequence of a function 𝑓of a gauge 

(𝐽) belonging to the ultrafilter of topologies on {𝐸, 𝐴, 𝐵, … }.  

 The path  𝜑(𝐴, 𝐵) is a set composed as 𝜑(𝐴, 𝐵) =  ∪𝑎∈𝐴,   𝑏∈𝐵  𝜑(𝐴, 𝐵) and they are defined in a 

sequence interval [0, 𝑓𝑛(𝑥)], 𝑥 ∈ 𝐸.  

For any closed 𝐷 situated between 𝐴 and 𝐵, 𝑓𝑛(𝑚) intersects the frontiers of 𝐵, 𝐷 and 𝐴, and 

the sequence 𝑓𝑛 has points identified with 𝑏, (𝑑𝑖, 𝑑𝑗 , … ∈ 𝜕𝐷), and 𝑎. This means that the relative 

distance of 𝐴 and 𝐵 in 𝐸, noted Λ𝐸(𝐴, 𝐵) is contained in 𝜑(𝐴, 𝐵):  

 

                                                           Λ𝐸(𝐴, 𝐵)  ⊆ 𝜑(𝐴, 𝐵).                                                      (5) 

 

In the case of completely ordered space, the distance (𝑑)  between 𝐴 and 𝐵 is represented by the 

relation  

 

                                 𝑑(𝐴, 𝐵) ⊆ dist(inf 𝐴, inf 𝐵) ∩ dist(sup 𝐴, sup 𝐵)                                 (6)  

 

with the distance evaluated through either classical forms or even the set-distance ∆(𝐴, 𝐵). 

The set-distance is the symmetric difference between sets and that it can be extended to 

manifolds of sets and it possesses all properties of a true distance [15, 16]. In a topologically closed 

space, such distances are the open complementary of closed intersections called “instances” by 

Bounias. The intersection of closed sets is closed and the intersection of sets with nonequal 

dimensions is always closed [13], therefore, the instances stands for closed structures. This reflects 

physical-like properties, i.e. they characterise objects, and the distances as being their 

complementaries constitute the alternative class. Thus, a physical-like topological space tends 

globally to be subdivided into objects and distances as full components.  

These properties state important  

Bounias’ theorem [5]: Any topological space is metrizable as provided with the set-distance (∆) as 

a natural metrics. All topological spaces are kinds of metric spaces called “delta-metric spaces”.  
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So, a distance ∆(𝐴, 𝐵) is a kind of an intrinsic case  [Λ(𝐴,𝐵)(𝐴, 𝐵)]  of  Λ𝐸(𝐴, 𝐵) while Λ𝐸(𝐴, 𝐵)  

is called a “separating distance”. The separating distance also stands for a topological metrics. 

Hence, if a physical space is a topological space, it will always be measurable.  

 

2.3. Space dimensions  

 

If the structure of members of a set is unknown, a problem arises how to distinguish unordered 

𝑁-tuples and ordered 𝑁-tuples. The problem is important for the assessment of the actual dimension 

of a space. 

Let a fundamental segment (𝐴𝐵) has intervals 𝐿𝑖 = [𝐴𝑖, 𝐴(𝑖+1)], a generator is composed of the 

union of several such intervals 𝐺 =∪(𝑖∈[1,𝑛]) 𝐿𝑖 and the similarity coefficients be defined for each 

interval by 𝜚𝑖 = dist(𝐴𝑖 , 𝐴(𝑖+1)/dist(𝐴𝐵).  

The similarity exponent of Bouligand, e, is such that for a generator with 𝑛 parts  

 

                                                    ∑ (𝜚𝑖)e 
𝑖∈[1,𝑛] = 1                                                          (7) 

 

When all intervals have (at least nearly) the same size, then the various dimension approaches 

according to Bouligand, Minkowski, Hausdorff and Besicovitch are reflected in the resulting relation 

                                                           𝑛 ∙ (𝜚)e = 1,                                                                (8) 

that is:  

                                                           e ≈ − Log 𝑛/Log 𝜚                                                    (9) 

 

where 𝜚 < 1.  When e is an integer, it reflects a topological dimension showing that a fundamental 

space 𝐸 can be tessellated with an entire number of identical balls 𝐵 exhibiting a similarity with 𝐸, 

upon coefficient 𝜚.  

In a space composed of members identified with some abstract components, it may not be found 

tessellating balls all having identical diameter. Then a measure should be used as a probe for the 

evaluation of the coefficient of size ratio 𝜚 needed for the calculation of a dimension.  

Fig. 1 shows the principle of the dimensionality formation of a simplex.  A 3-object has 

dimension 2 iff the longer side of given 𝐴max
1

 fulfils the condition, for the triangular strict inequality, 

where 𝑀 denotes an appropriate measure:  

 

                         𝑀(𝐴max
1 )  <  𝑀(𝐴2

1)  < 𝑀(𝐴3
1)                                                       (10) 

 

Generally for a space 𝑋 being a 𝑁-object 
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                                     𝑀(𝐴max
𝑘 )  < ⋃  {𝑀(𝐴𝑖

𝑘)}𝑁−1 
𝑖=1

                                                               (11) 

 

where N is the number of vertices, i.e. members in 𝑋, 𝑘 = (𝑑 − 1 = 𝑁 − 2), and 𝐴max
𝑘

  is the 𝑘-face 

with maximum size in 𝑋.  

According to the relation (11), for a 2-object, i.e. when 𝑁 = 2, 𝑋 = {𝑥1, 𝑥2} we have the 

dimension equals 1 iff  𝑥1 < (𝑥1 + 𝑥2), i.e. iff 𝑥1 < 𝑥2 (Fig. 1). This qualifies the lower state of an 

existing space 𝑋1.  

                            

 

Figure 1. The first three steps of the 𝑁-angular strict inequality for the assessment of the 

dimensionality of a simplex. In the lower right picture, the larger side standing for 𝐴max
𝑘

 is 𝑆1, such 

that in a 2D space we have exactly: 𝑆1 = 𝑆2 + 𝑆3 +  𝑆4.  

 

 

Now if 𝑋 is decomposed into the union of balls represented by D-faces 𝐴D having dimension 

Dim (𝐴D) = D by the relation (11) and size 𝑀(𝐴1) for a 1-face. Such a D-face is a D-simplex 𝑆𝑗 

whose size, as a ball, is evaluated by 𝑀(𝐴max
1 )D = 𝑆𝑗

D. Let 𝒩 is the number of such balls that can be 

filled in a space 𝐻, so that  

 

                                       ⋃ {𝑆𝑗
D} ⊆ (𝐻 ≈ 𝐿max

d )
 

𝒩 
𝑖=1

                                                                  (12) 

 

where 𝐻 is the ball whose size is evaluated by 𝐿d, 𝐿 is the size of a 1-face of 𝐻, and d is the 

dimension of 𝐻. If ∀𝑆𝑗, 𝑆𝑗 ≈ 𝑆0, then the dimension of 𝐻 is 

 

                              Dim(𝐻) ≈ (D ∙ Log 𝑆0 + Log 𝒩)/Log 𝐿max
1 .                                           (13) 
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The relation (13) stands for an interior measure in the Jordan’s sense.  

In contrast, if we assume that the reunion of balls covers the space 𝐻, then Dim(𝐻) will rather 

represents the capacity dimension, which remains an evaluation of a fractal property.  

 

3. The founding element and founding lattice 

 

As was shown by Bounias and Bounaly [15, 16], the existence of the empty set is a necessary 

and sufficient condition for the existence of abstract mathematical spaces (𝑊𝑛) endowed with 

topological dimensions (𝑛). That is, the empty set appears as a set without members though 

containing empty parts. The empty set exhibits (i) self-similarity at all scales and (ii) nowhere 

derivability, i.e. two characteristics of fractal structures.  

The general postulate that some set exists was reduced [15, 16] to a weaker form, namely, to the 

axiom of the existence of the empty set. It was shown that providing the empty set (∅) with (∈, ⊂) 

as the combination rules (the same with the property of complementarity (∁)) resulted in the 

definition of a magma allowing a consistent application of the first De Morgan’s law without 

violating the axiom of foundation iff the empty set seen as a hyperset that is a nonwellfounded set. 

These results led to the formulation of an important theorem established by means of several 

lemmas, which is stated below. 

Bounias’ Theorem [5]. The magma ∅∅ = {∅, ∁} constructed with the empty hyperset and the axiom 

of availability is a fractal lattice.  

Remark. A magma is a set equipped with a single binary operation that must be closed by 

definition. Writing (∅∅) denotes that the magma reflects the set of all self-mappings of ∅, which 

emphasizes the forthcoming results.  

Lemma 1. The space constructed with the empty set cells of 𝐸∅ is a Boolean lattice.  

Proof. (i) Let ∪ (∅) = 𝑆 denote a simple partition of (∅). Suppose that there exists an object (𝜀) 

included in a part of 𝑆, then necessarily (𝜀) = ∅  and its belongs to the partition.  

           (ii) Let 𝑃 = {∅, ∅} denote a part bounded by sup 𝑃 = 𝑆  and inf 𝑃 = {∅}. The combination 

rules ∪ and ∩ provided with commutativity, associativity and absorption are holding. In effect:  ∅ ∪

∅ = ∅,  ∅ ∩ ∅ = ∅  and thus necessarily  ∅ ∪ (∅ ∩ ∅) = ∅,  ∅ ∪ (∅ ∪ ∅) = ∅. Thus, space 

{𝑃(∅), (∪,∩)} is a lattice.  

The null member is Ø and the universal member is 2∅ that should be denoted by ℵ∅. Since in 

addition, by founding property ∁∅(∅) = ∅, and the space of (∅) is distributive, then 𝑆(∅) is a 

Boolean lattice.                                       

Lemma 2. 𝑆(∅) is provided with a topology of discrete space. 

Proof. (i) The lattice 𝑆(∅)) owns a topology. In effect, it is stable upon union and finite intersection, 

and its contains (∅).  
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            (ii) Let 𝑆(∅) denote a set of closed units. Two units ∅1,   ∅2  separated by a unit ∅3 compose a 

part {∅1, ∅2, ∅3}. Then, owing to the fact that the complementary of a closed is an open: 

∁∅1,∅2,∅3
{∅1, ∅3} = ∅2 and ∅2 is open. Thus, by recurrence, {∅1, ∅3} are surrounded by open ]∅[ and 

in parts of these open, there exists distinct neigborhoods for ∅1 and (∅3). The space 𝑆(∅) is therefore 

Hausdorff separated. Units (∅) formed with parts thus constitute a topology (𝑇∅) of discrete space. 

Indeed, it also contains the discrete topology (∅∅, (∅)), which is the coarse one and is of much less 

mathematical interest.  

Lemma 3. The magma of empty hyperset is endowed with self-similar ratios. The Von Neumann 

notation associated with the axiom of availability, applying on (∅), provides existence of sets (𝑁∅) 

and 𝑄∅ equipotent to the natural and the rational numbers, Refs. [14, 15]. Sets 𝑄 and 𝑁 can thus be 

used for the purpose of a proof. Consider a Cartesian product 𝐸𝑛 × 𝐸𝑛 of a section of (𝑄∅) of 𝑛 

integers. The amplitude of the available intervals range from 0 to 𝑛, with two particular cases: 

interval [0, 1] and any of the minimal intervals [1/(𝑛 − 1), 1/𝑛]. Consider now the open section 

]0, 1[ :  it is an empty interval, noted ∅1. Similarly, note ∅min = ]0, 1/𝑛(𝑛 −  1)[. Since interval [0,

1/𝑛(𝑛 − 1)] is contained in  [0, 1], it follows that ∅min ⊂ ∅1. Since empty sets constitute the 

founding cells of the lattice 𝑆(∅) proved in Lemma 1, the lattice is tessellatted with cells (or balls) 

with homothetic-like ratios of at least 𝑟 = 𝑛(𝑛 − 1).  

Definition 1. Such a lattice of tessellation balls will be called a “tessellattice”.  

Lemma 4. The magma of empty hyperset is a fractal tessellattice. 

Proof. (i)  As follows from the above, one can write (∅) ∪ (∅) = (∅, ∅) = (∅).  

           (ii) It is straightforward that  (∅) ∩ (∅) = (∅). 

           (iii) Last, the magma (∅∅) = {∅, ∁} represents the generator of the final structure, since (∅) 

acts as the “initiator polygon”, and complementarity as the rule of construction. These three 

properties stand for the major features which characterise a fractal object [17].  

Finally, the axiom of the existence of the empty set, added with the axiom of availability in turn 

provide existence to a lattice 𝑆(∅) that constitutes a discrete fractal Hausdorff space, and the proof is 

complete.  

 

4. Existence and nature of spacetime 

 

The existence of a Boolean lattice with fractal properties originating from nonwellfounded 

properties of the empty can be compared with the presence of a primary substrate with both discrete 

and continuous properties. Such a substrate acts in a role of a physical universe up to the function of 

conscious perception [5, 6].  
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In such a construction, spacetime is presented as an ordered sequence of mappings of closed 3D 

Poincaré sections of a topological 4-space provided by the lattice, and even the function of conscious 

perception is founded on the same properties.  

Lemma 5. A lattice of empty sets ensure the existence of at least physical-like space.  

Proof. Let ∅ denote the empty set as a case of the whole structure, and {∅} denotes some of its 

parts. The set of parts of ∅ contains parts equipotent to sets of integers, of rational and of real 

numbers, and owns the power of continuum [15, 18, 19]. The intersections of the inferring spaces 

(𝑊𝑛), (𝑊𝑚), ...  having unequal dimensions lead to the appearance of spaces containing all their 

accumulation points and, thus, forming closed sets. Hence  

 

                                 {(𝑊𝑛) ∩ (𝑊𝑚)}𝑚 > 𝑛 = (Θ𝑛)  is closed space.                                  (14) 

 

These spaces are discrete manifolds whose interior is endowed with the power of continuum. 

Consider a particular case (Θ4) and the set of its parts 𝑃(Θ4); any of intersections of subspaces 

(𝐸𝑑)𝑑 < 4 provides a 𝑑-space in which the Jordan-Veblen theorem allows closed members to get the 

status of both observable objects and perceiving objects [14] . This is a condition for a space to be in 

some sort observable, that is physical-like. In any (Θ4)-space, the ordered sequences of closed 

intersections {(𝐸𝑑)𝑑 < 4} with respect to mappings of members of {(𝐸𝑑)𝑑 < 4}𝑖 into {(𝐸𝑑)𝑑 < 4}𝑗 

provides an orientation accounting for the physical arrow of time [16], in turn embedding an 

irreversible arrow of biological time [19].   

Proposition 1. A manifold of potential physical universes is provided by the (Θ4)  category of 

closed spaces.  

Thus, our spacetime is one of the mathematically optimum ones together with the alternative 

series of {(𝑊3) ∩ (𝑊𝑚)}𝑚 > 3. Higher spacetimes (Θ𝑛)𝑛 > 3 could also exist.  

 

4.1. Spacetime as a topologically discrete structure  

 

The mappings of the Poincaré section 𝑆𝑖 into the section 𝑆𝑖+1 imposes the conservation of the 

topologies of the general structure of the mapped spaces. This makes it possible to characterise 

changes in the position of objects located inside these structures. A closed set should be mapped into 

an equivalent closed, an open into an equivalent open, and the places of points (𝑥, 𝑦, … ) with respect 

to these reference structures (𝐴, 𝐵, … ) are described by indicatrix functions 1𝐴(𝑥), 1𝐵(𝑥), …  

Two Poincaré sections, which are mapped, allow the assessment by using a natural metrics of 

topological spaces – the set-distance, Refs. [15, 16]. Let ∆(𝐴, 𝐵, 𝐶, … ) be the generalised set distance 

as the extended symmetric difference of a family of closed spaces:  
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                                          ∆(𝐴𝑖)
 

𝑖 ∈ 𝑁 =  ∁  
∪{𝐴𝑖} ⋃ (𝐴𝑖 ∩ 𝐴𝑗) 

𝑖≠𝑗                                                  (15) 

 

The complementary of ∆, that is ⋃ (𝐴𝑖 ∩ 𝐴𝑗)𝑖≠𝑗  in a closed space is closed. It is also closed even if it 

involves open components with nonequal dimensions. Thus, in this system 𝓂〈{𝐴𝑖}〉 = ⋃ (𝐴𝑖 ∩𝑖≠𝑗

𝐴𝑗) is the instance, that is the state of objects in a timeless Poincaré section [14, 15]. Since distances 

∆ are the complementaries of objects, the system stands as a manifold of open and closed subparts. 

Mappings of these manifolds from one into another section, which preserve the topology, stand for a 

reference frame in which the “analysis situ” (the original name for topology) will allow one to 

characterise the eventual changes in the configuration of some components. If morphisms are 

observed, then it should be interpretable as a motion-like phenomenon when comparing the state of a 

section to the state of the mapped section.  

It should be noted that the spaces referred above can exist upon acceptance of the existence of 

the empty set as a primary axiom [15, 16]. 

Bounias’ Lemma [6]. The set-distance provides a set with the finer topology and the set-distance of 

nonidentical parts provides a set with an ultrafilter.  

Proof. The set-distance ∆ is founded on {∩∪∈} and it suffices to define a topology since union and 

intersection of set-distances are distances, including ∆(𝐴, 𝐴) = ∅. The latter case must be excluded 

from a filter, which is nonempty. Then, since any filter and any topology is founded on  {∩ ∪ ∈ ∉ ⊃}, 

it is provided with ∆. Conversely, regarding a topology or a filter founded on any additional property 

(⊥), this property is not necessarily provided to a ∆-filter. The topology and filter induced by ∆ are 

thus respectively the finer topology and an ultrafilter.  

The mappings of both distances and instances from one to another section can be described by a 

function called the “moment of junction” (𝑀𝐽), which has the global structure of a momentum. Here 

is an example: the case of the homeo-morphic sequence of mappings of the general topology of the 

system; this provides a kind of reference frame, in which it will become possible to assess the 

changes in the situation of points and sets of points eventually present within these structures. The 

appropriate Bounias’ lemma involving an indicator function is proved in paper [6]. 

So, the composition of the topological distances ∆(𝐴, 𝐵, … ) = ∁𝐴∪𝐵 … (A∩B∩…) or the 

topological “instances” 𝓂〈(𝐴, 𝐵, 𝐶, … )〉 = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶) …  with a function f, which 

indicates the changes occurring in the situation of objects, acting over the populations of objects in 

the considered sets, leads to a momentum-like structure (𝑀𝐽) and accounting for elements of the 

differential geometry of space.  

The (𝑀𝐽), mapping an instance (a 3D section of the embedding 4-space) to the next one, applies 

to both the open (the distances) and their complementaries, which are the closed (the reference 

objects) in the embedding spaces. Hence, points standing for physical objects may also be contained 
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in both of the reference structures. Then, it appears that two kinds of mappings are composed with 

one another.  

Bounias’ Theorem [6]. A space-time-like sequence of Poincaré sections is a nonlinear con- volution 

of morphisms.  

Proof demonstrates that the generalised convolution, which is a nonlinear and multidimensional 

form of the convolution product, exhibits a great similarity with a distribution of functions, namely 

in the Schwartz [20] sense  

 

                                                      〈𝑓, 𝜑〉 = ∑ 𝜑(𝑥)𝑓(𝑥),                                                           (16) 

  

or a convolution product  

 

                                               ∫ 𝑓(𝑋 − 𝑢)𝐹(𝑢)𝑑(𝑢) = (𝑓 ∗ 𝐹) (𝑋).                                     (17) 

 

Thereby, the connection from the abstract universe of mathematical spaces and the physical 

universe of our observable ordinary space-time, i.e. the fundamental metrics, is provided by a 

convolution of morphisms, which supports the conjecture of the relation [21, 6] 

 

                                 𝔇4 = ∫ (∫ (𝑑𝑥⃗ ∙ 𝑑𝑦⃗ ∙ 𝑑𝑧
 𝑑𝑆max 

 
𝑑𝑆0

) ∗ 𝑑Ψ(𝑥))                                  (18) 

 

where 𝑑𝑆 is the element of space-time and 𝑑Ψ(𝑥) is the function accounting for the extension of 3D 

coordinates to the 4th dimension through convolution (∗) with the volume of space. In such a way, 

spaces of topologically closed parts account for the interaction and perception and hence they meet 

the properties of physical spaces.  

 

5. Particles in a lattice universe  

 

Let space be represented by the lattice 𝐹(U) = {∪ (∑ 𝑊𝑛
𝑛 )} ∪ 𝜛 where 𝜛 is the set with 

neither members nor parts, i.e. the “nothingness singleton”. The 𝜛  has neither members nor parts 

and it is contained in none of existing sets: otherwise it would be the complementary of Borel sets 

and therefore it would include parts of itself. This provides the set of possible structures with a lower 

boundary [6]. 

Thus, the lattice 𝐹(U) = {∪ (∑ 𝑊𝑛
𝑛 )} ∪ 𝜛  supports both relativistic space and quantic void 

because (i) the concept of distance and the concept of time have been defined on it, and (ii) this space 

holds for a quantum void since on one hand, it provides a discrete topology, with quantum scales, 

and on the other hand it contains no “solid” objects that would be associated with physical matter.  
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The further consideration [6] of an indicator function involves the mapping of a frame of 

reference into its image frame of reference in the next section of spacetime. Without such a 

continuity there would be no possibility of assessing the motion of any object in the perceived 

universe (and this is exactly a case of “analysis situs” in the original meaning used by Poincaré). 

Continuity in the perception of a spacetime is provided iff the frames of references are conserved 

through homeomorphic mappings. This means that there is no need for exact replication: just 

topological structures should be conserved. Therefore, the implementation of varieties is allowed 

even in a space of different dimensions. This supports the following:  

Proposition 2. The sequence of mappings of one into another structure of reference (e.g. elementary 

cells) represents an oscillation of any cell volume along the arrow of physical time.  

There may be a threshold that prevents the preservation of homeomorphisms: let the cell 

transformation involve some repeated internal similarity (Fig. 2 shows a simplified example). Then, 

if 𝑁 similar figures with similarity ratios 1/𝑟 are obtained, the Bouligand exponent (e) is given by 

the relation (8), 𝑁(1/𝑟)e = 1, and the image cell gets a dimensional change from 𝑑  to  𝑑′ =

ln(𝑁)/ ln(𝑟) =  e > 1.  

                    

                            

Figure 2. The continuity of homeomorphic mappings of structures is broken if once a deformation 

involves an iterated transformation with internal self-similarity, which involves a change in the 

dimension of the mapped structure. The first two or three steps of the iteration are sketched with 

basically the new figure jumping from (D) to approximately (D + 1.45). The mediator of 

transformations is provided in all cases by empty set units.  

 



Krasnoholovets                           Journal for Foundations and Applications of Physics, vol. 12, No. 2 (2025) 

56 
 

 

 

 

 

 

 

Then, probably, the homeomorphic part of the image cell is no longer an continued figure, and 

the transformed cell no longer possesses the property of a reference cell. This transformation stands 

for the formation of a “particle” also called “particled cell” or more appropriately “particled ball”, 

since it is a kind of topological ball 𝐵[∅, 𝑟(∅)]. Thus we can claim the   

Statement: A particled ball is represented by a non-homeomorphic transformation in the continuous 

deformation of elementary cells of space. 

 

5.1. Quanta of fractality 

 

To understand the interactions of particled balls with the degenerate space-lattice and further 

with other particled balls, it is necessary to demonstrate some mathematical preliminary operations. 

 A minimum fractal structure is provided by a self-similar figure whose combination rule 

includes a initiator and generator for which the similarity dimension exponent is higher than unity.  

(i) Initiator. Due to self-similarity of ≥ ∅, one considers the complementary of itself in itself and the 

one gains: ∅ ⟼ {(∅), ∅}. That is, one ball gives two identical balls. This is continued into a 

sequence of {
1

2
,

1

4
, … ,

1

2𝑛
} numbers at the 𝑛th iteration and the series (𝐼) = ∑ {1/2𝑖}𝑖=1→∞  stands for 

the initiator providing the needed iteration process. The terms of (𝐼) are indexed on the set of natural 

numbers, and thus supply an infinitely countable number of members.  

Bear in mind, 2𝑛 also denotes the number of parts from a set of 𝑛 members. 

(ii) Generator. Let an initial figure (A) be subdivided into 𝑟 subfigures at the first iteration and 

hence the similarity ratio is 𝜚 = 1/𝑟. Let 𝑁 = (𝑟 + 𝑎)  be the number of subfigures constructed on 

the original one. Then one has e = −Ln(𝑟 + 𝑎)/Ln𝑁 and in this expression the value of e is 

bounded by unity if 𝑟 is extended to infinity. For any finite 𝑟 (which is presumably the case in the 

physical world), the exponent “e” is greater than unity. Then  

 

                          {min(e) |e > 1} = Ln (max(𝑟) + 1) / Ln(max (𝑟)),                               (19) 

 

which completes the description of a quantum of fractality.  

 

5.2. The fractal decomposition principle  

 

Consider a fractal system Γ constructed as Γ = {(∅), (𝑟 + 𝑎)}. More complex systems simply 

require combining several different subfigures, to which the following reasoning can be extended. At 

the 𝑛th iteration, the number of additional subfigures is 𝑁𝑛 = (𝑟 + 𝑎)𝑛 and the similarity ratio is 

𝜚𝑛 = 1/𝑟𝑛. At the 𝑖th iteration, subvolume (𝑣𝑖) is created and in the simplest case 𝑣𝑖 =
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𝑣𝑖−1 ∙ (1/𝑟)3. Since the number 𝑁𝑖 = (𝑟 + 𝑎)𝑖 of such subvolumes is created at the 𝑖th iteration, the 

total volume covered by the subvolumes formed by the fractal iterations to infinity is the sum of the 

series 

  

                                𝑣𝑓 = ∑ {(𝑟 + 𝑎)𝑖 + 𝑣𝑖−1(1/𝑟)3} 
𝑖=1→∞                                      (20) 

 

that can further be developed into 

 

                                    𝑣𝑓 = ∑  {[∏ ] (𝑟 + 𝑎)𝑖−1(1/𝑟)3  
𝑖=1→𝑛

}  
 𝑖=1→∞                                  (21) 

 

This leads to the following  

Definition 2. Fractal decomposition consists in the distribution of members of a set of fractal 

subfigures 

 

                                          Γ ⊃ {∑ {(𝑟 + 𝑎)𝑖 ∙ 𝑣𝑖−1 ∙ (1/𝑟)3}  
𝑖=1→∞ 

}                                  (22) 

 

constructed on one figure among a number of connected figures (C1, C2, … , C𝑘) similar to the initial 

figure (A). If 𝑘 reaches infinity, then all subfigures of (A) are distributed and (A) is no longer a 

fractal.  

That is, a ball with its set of fractals can distribute these fractals all around to the nearest balls, 

such that the ball will lose its fractal dimension though preserving the volume (Fig. 3). Such a picture 

can arise during the motion of the particled ball, which squeezes between surrounding degenerate 

balls of the tessellattice and experiences a kind of friction. Fractal decomposition leads to the 

distribution of coefficients 𝑓(e𝑘), whose most ordered form is a sequence of decreasing values:  

 

                                                   𝑓(e𝑘) = {(e1)(𝑖 ∈ ]𝑘,1])}.                                                           (23)  

  

 From the relation (23), it follows that the remaining of fractality decreases from the kernel (i.e. 

the zone adjacent to the original particled deformation) to the edge of the cloud of scattered fractals. 

At the edge, it can be conjectured that, depending on the local resistance of the tessellattice, the last 

decomposition (denoted as the 𝑛th iteration) can result in (e𝑛) = 1. Thus, while central fractals 

exhibit decreasing higher boundaries, edge fractals are bounded by a rupture of the remaining 

fractality.  
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Figure 3. Scheme of the possible distribution of volumetric fractals from the particled ball. 

 

 

5.3. Particle’s fractals as fragments of mass  

 

A particled ball, as described above, provides a formalism that describes elementary particles. In 

this respect, mass is represented by a fractal reduction in the volume of the ball, while a simple 

reduction in volume, as in degenerate cells, which is not obey any law, is not enough to provide 

mass. Accordingly, if 𝑣o is the volume of an absolutely free cell, then the re- duction in volume as a 

result of fractal concavity will be as follows: 𝒱particle = 𝑣o − 𝑣f , that is, according to the relation 

(21):  

 

          𝒱particle = 𝑣o ∙ (1 −  ∑ {[ ∏  ]  (𝑟 + 𝑎)𝑖−1/ (𝑟)3𝑖  
𝑖=1→𝑛

} 
  

𝑖=1→∞
)                   (24) 

 

that is, since (r + a) = (r)e, we have instead of (24) 

 

            𝒱particle = 𝑣o ∙ (1 − ∑  (  ∑  {[ ∏ ] (𝑟𝑣)e𝑣(𝑖−1)/ (𝑟)3𝑖 
𝑖=1→𝑛

}  
 𝑖=1→∞

)
𝑣

  
(𝑣)  )            (25) 

 

where (𝑣) denotes several possible fractal concavities affecting the particled ball.  

The relationship (25) relates the volume of particled balls to the fractal dimensional change (e), 

which can be expressed as the following:  



Krasnoholovets                           Journal for Foundations and Applications of Physics, vol. 12, No. 2 (2025) 

59 
 

 

 

 

 

 

Proposition 3. The mass 𝑚 of a particled ball 𝐴 is a function of the fractal-related decrease of the 

volume of the ball:  

 

                                           𝑚 ∝ (𝒱degen. / 𝒱particle) ∙ (e𝑣 − 1)e𝑣 > 1  >  1                       (26) 

 

where 𝒱degen. is the volume of a degenerate topological ball,  𝒱particle  is the volume of the particled 

ball, (e) is the Bouligand exponent and (e − 1) is the gain in dimensionality given by the fractal 

iteration as ascribed to the volumetric changes of the ball.  If we multiply expression (25) by the 

dimensional factor 𝐶, we will have the physical definition of the mass of the particle. 

Just a volume decrease is not sufficient for providing a ball with mass, since a dimensional 

increase is a necessary condition. A ball contracted in the described way becomes a lepton particle, 

namely: an electron, muon, tau (and also their antipodes). So, the emergence of a local fractal 

deformation in the degenerate tessellattice means the appearance of matter.  

 

6. Discussion and Conclusion 

 

Thus, the conducted studies of the topology of physical space show that it consists of discrete 

cells endowed with quantum-determined relative scales and the interior of which is potentially 

provided with the power of continuum. This property bridges the gap between the still discrete nature 

of the microscopic world and the apparent continuity of the macroscopic universe. 

The moments of junction map Poincaré’s timeless section representing the state of involved 

spaces into another state. The moments of junction represent the interval between two successive 

states (each timeless) of a universe. Let 𝐸𝑖 be a Poincaré section like 𝑆𝑖 defined above: if it is an 

identity mapping, 𝑀𝐽 = 𝐼𝑑(𝑆), then there is no time interval from 𝑆𝑖 to 𝑆𝑖+1. In all other cases, the 

𝑀𝐽 represents two important parameters: first, it accounts for a differential time interval, and then for 

a differential element of the geometry of the corresponding space. In this sense, it has neither 

“thickness” nor duration. There is no “distance” in the Hausdorff sense between 𝑆𝑖 and 𝑆𝑖+1, just a 

change in the topological situation. Since the step from 𝑆𝑖 to 𝑆𝑖+1 is a discrete one, it follows that (i) 

the corresponding space has discrete, i.e. peculiar quantum properties, and (ii) these discrete 

properties are valid independent of scales because they are based on a set difference that is neither 

scale nor size dependent phenomenon. It should be noted that these properties meet some 

requirements for space, time and matter. 

The moment of connection formalizes the topological characteristics of what is called motion in 

the physical universe, that is, what is considered necessary for understanding physics. Whereas an 

identical mapping means no motion, i.e., zero time span, a nonempty moment of junction means the 

minimum of any time interval. In our understanding, there is no such “point”: only instances that in 

themselves do not reflect timely features.  
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The fractal kernel stands for a “particle” and the reduction of its volume (together with an 

increase of its area) is compensated by morphic changes of a finite number of surrounding cells.  

Note the formalism of quantum mechanics was developed at the atom scale, 10−10 m; the space 

surrounding  the particle is still considered to be empty, it is a vague vacuum. However, we 

investigate physical space practically in the vicinity of a point. Are there physical constraints that 

indicate the existence of drastic topological fluctuations at the Planck scale, i.e. ~10−35 m? A 

mathematical space can give raise to several topologies, which range from coarser to finer forms, in 

relation to order [22]. A smoothing of topologies at low scale would be needed. These apparent 

contradictions disappear with the properties of the empty hyperset, which provides discrete features 

at all scales but also possesses the power of continuum, i.e. physical ‘continuity’ within each 

fundamental cell. Note that continuity in the mathematical sense does not require smoothing. The 

set-distance is a scale-independent measure that is capable of satisfying the necessary requirements, 

eliminating the scale-related problem. No contradiction seems to lurk in these approaches.  

This is in direct agreement with the recent study of Haug [23], who shows that in a system with 

a huge number of particles, such as the Earth, the effective Compton wavelength reaches a value of 

~10−68 m, which is much smaller than the fundamental Planck length ℓP = √ℏ𝐺/𝑐3 =

1.616 × 10−35 m. Nevertheless, this effective length does work and this means that the Planck 

length is not minimal, and that space allows fragmentation to practically infinitesimally small values 

via fractals, as illustrates Fig. 3 (although the size of a cell of the tessellattice remains at the level of 

the Planck length). 

So, the analysis of the topology of physical space discussed in this paper shows that physical 

space, i.e. our universe,  exists in the form of a tessellattice, i.e. a mathematical lattice tightly packed 

with primary topological balls. These balls play the role of cells of the tessellattice. Cells with the 

size equal to ℓP are rather in a degenerate state, and a particle is created from a cell almost instantly 

in a rapid fractal transformation process (Fig. 2).  

The creation of a particle means a complete volumetric fractal transformation of the cell, and the 

particle pattern is given by expressions (24) and (25). The appearance of something (i.e. a matter) in 

the emptiness (the degenerate tessellattice) is characterised by the particle mass, which is defined in 

the relation (26). The transition from the mathematical definition of the particle mass (26) to the 

physical value must include the dimensionality factor.  

The motion of the particle occurs with the decay of its mass – a cloud of fractals, i.e. mass 

fragments, accompany the particle. These mass fragments were named ‘inertons’ by the author (see, 

e.g. Ref. [9]), and it was shown that the inerton cloud emitted by the moving particle is reflected by 

the elastic tessellattice back to the particle. So, the particle periodically emits its inerton cloud along 

each odd section 𝜆/2 of its path, and then absorbs inertons back along each even section 𝜆/2. Then 

the length 𝜆 should be called the period of spatial oscillations of the particle, and this magnitude 

itself is nothing but the particle de Broglie wavelength. The two relationships proposed by de Broglie 
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[24], were also derived by the author based on consideration of the motion of a particle in the 

tessellattice, i.e. from first principles:  

 

                                           𝜆 = ℎ/𝑚𝜐,       𝐸 = ℎ𝜈                                                           (27) 

 

where 𝜈 = 𝜐/𝜆. These two relationships allow one to easily derive the Schrödinger equation (see, 

e.g. Ref. [9]): 

 

                                                 Δ𝜓(𝑥, 𝑡) +  𝑖
2𝑚

ℏ

𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 0.                                                      (28) 

 

Besides, the relationships (27) satisfy also a conventional wave equation  

 

                                              

                                            ∆𝜓(𝑟, 𝑡) −
1

𝜐2

𝜕2

𝜕𝑡2 
𝜓(𝑟, 𝑡) = 0,                                                       (29) 

 

which is the only one that correctly describes the spectra of all atoms. Namely, Shpenkov and 

Kreidik [25–32] in their very impressive and important works showed that the Schrödinger equation 

that includes the Coulomb potential offers an artificial not natural spectrum, although physicists for 

decades have emotionally explained the success of quantum mechanics using the hydrogen atom as 

an example. They [25-32] really demonstrated that contrary to the Schrödinger equation (28), the 

wave equation (29) that propagates in the real medium perfectly describes all experimental spectra of 

different atoms starting from the hydrogen one. Thereby, physical space presented in the form of the 

tessellattice, which is a substrate, in fact allows the propagation of real waves and hence in such a 

case the description of microphysical phenomena using the wave equation looks quite natural.  

In general, we see that the tessellattice plays the role of neutrality, that is, a state where no 

physical parameter dominates over the other, such as positive and negative charge, mass and tension, 

cell inflation and contraction, left and right vortex, etc. 

Further research [9] revealed how far the particle’s inerton cloud spreads from the particle and 

the appropriate amplitude of the inerton cloud is equal to Λ = 𝜆𝑐/𝜐 where 𝑐 is the speed of light, 

which is also the speed of sound of the tessellattice. Thus, the system {particle + its inerton cloud}, 

i.e. the kern ball with its disseminated volumetric fractals, is mapped into the quantum mechanical 

formalism as the “mysterious” ψ-wave function of the particle or more naturally  is included in the 

wave equation. Thus, realistically the wavefunction 𝜓(𝑟) represents the distribution of mass 𝑚(𝑟) of 

the system {particle + its inerton cloud} normalised to the initial rest mass 𝑚0 of the particle, i.e. 

𝜓(𝑟) = 𝑚(𝑟)/𝑚0. 
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Of course, some inertons can be released from the particle’s inerton cloud and migrate 

individually, hopping from cell to cell in the tessellattice. Hence, inertons as carriers of mass are also 

carriers of the field of inertia, which can be considered as a new physical field discovered recently. It 

is likely that in the near future an inerton communication may compete with wireless electromagnetic 

communication [33]. 

In a similar way, in addition to the considered volumetric fractals, we can also examine surface 

fractals of primary topological balls in the tessellattice. This allows us to derive the concept of 

electric charge as a spherical surface covered with surface fractals, which are spikes  [34, 7, 9]. 

Finally, one can arrive at Maxwell’s equations [9, 35], which represent not only an electric charge, 

but also a magnetic monopole, since only a monopole can be a source of a magnetic field. 

Besides, in the tessellattice, fractals can not only contract the volume of cells, fractals are able 

also to inflate cells increasing the ball’s volume, which means the creation of a family of quarks [7 – 

9].  

Thus, the described approach to the study of topology of physical space paves the way for a 

deeper investigation of microcosm than the quantum mechanical formalism presented. Basically, this 

submicroscopic approach is resting on the theory of real space, discussed in this paper, and allows a 

radical revision of existing abstract concepts that prevail in theoretical models of particle physics. 

The submicroscopic concept enables also to thoroughly study the origin of gravity and understand 

such unusual phenomena as dark matter and dark energy in detail [9, 36].  

Finally, let us look into the distant past. Vedic heritage and epics are very interesting and 

instructive. That culture started in the country of Aratta 8000–5000 years ago [37] (known as 

Cucuteni-Trypillia archaeological culture that existed in the lower reaches of the Dnipro and Danube 

rivers covering modern countries of Ukraine, Moldova and Romania). Around 3,000 years ago, their 

descendants migrated to Punjab where the Vedic texts were written down by brahmins. Some of the 

records are directly related to the issues discussed in this paper.  

Roy [38] reading The Rigveda and other ancient Vedic books as a physicist saw in the texts the 

coded knowledge about the structure of space, cosmology and elementary particles. In particular, he 

found that real space was called ‘loka’: the loka has a web structure, it consists of indivisible cells; 

cells are characterised by their interface. Then he derived the notion of the electric charge from a few 

verses of The Rigveda: “The electric charge is kept and plays on the surface of the particle”, which 

exactly coincides with the structure of the electric charge proposed in [7, 9, 34, 35] as discussed 

above. 

Let us read The Bhagavad-Gita together with Bhaktivedanta Swami Prabhupada [39], the known 

religious scholar. Chapter 2, which is a review of The Bhagavad-Gita, contains the information on 

the existence of the first cause of matter in the form of an indivisible thing that is usually called 

“soul”. However, Swami Prabhupada [39] noted that soul should also be understood as a subtle 

particle. Then we can read in Chapter 2: “In spite of the material body being subject to destruction, 
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the subtle particle is eternal” (BhG.: 2.18); “It never takes birth and never dies at any time nor does it 

come into being again when the material body is created. It is birthless, eternal, imperishable and 

timeless and is inviolable when the body is destroyed” (BhG.: 2.20); “After some time it is 

disenthralled by entire annihilation of the material body. Yet it endures the destruction of the 

material world” (BhG.: 2.22); “It is not fissionable, not burning out, not soluble, and not drying up” 

(BhG.: 2.23); “Since it is not visible, its entity does not change, its properties remain unchangeable” 

(BhG.: 2.24). Then in Chapter 8 we can read in addition: “Yet there is another nature, which is 

eternal and is transcendental to this manifested and unmanifested matter. It is supreme and is never 

annihilated. When all in this  world is annihilated, that part remains as it is” (BhG.: 8.20). 

Thereby, The Bhagavad-Gita appears to reveal, in particular, information about the building 

block of real space that exists in the form of a web net. Such a block, the subtle particle cannot 

annihilate; it is eternal and cannot be destroyed. This knowledge on the structural block of space is 

an additional confirmation of the correctness of Roy’s [38] deciphering: real physical space has the 

structure of a web net (and each cell of the net is occupied by a “subtle particle”). Vedic literature 

also informs us that the subtle particle (or superparticle, or primary topological ball) is primordial 

and incomprehensible. 

Nowadays researchers mostly follow the path of a logical-analytical, rational worldview, which 

can be associated with “manual control” and almost complete disregard for learning on the part of 

Space. In modern times, as we see in social life, such manual control everywhere brings only 

disorder and destruction. However, not only physics, but also all mathematics, including topology 

and fractal geometry, begin with the laws of real Space, and therefore it is Space that is capable of 

giving science the correct guidelines regarding further directions of research. 

During the times of Vedic culture (8,000–5,000 years ago in the country of Aratta), people’s 

worldview rested on a figurative-intuitive perception of the world, which subconsciously brought 

culture into the information field [40] (it was manifested through the all-powerful, all-seeing god of 

the Slavic, Indian and Iranian Vedas). Therefore, that society lived without wars, conflicts and 

strifes; there were not even mournful songs. Such a perception of the world automatically introduced 

a person into natural harmonic behaviour, as if the person was in the “autopilot mode”, and then the 

laws of Space subconsciously guided the person through life. For this, one needs to make an effort to 

connect to this “autopilot” through understanding and psychophysical practice, that is, to connect to 

the natural harmony of Space and the presence of oneself in Space as well. 

So scientists who largely follow a logical-analytical, rational worldview must also realise the 

presence of a natural figurative-intuitive worldview, which is also capable of leading to significant 

achievements and therefore should never be neglected.  
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