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Abstract

The paper reviews major approaches to the description of subatomic particles, such
as leptons, quarks, hadrons and nucleons. Among these approaches are quantum chromo-
dynamics, soliton models, bag models and others. The main accent is on a theory of the
real physical space that acts as a scene on which all high-energy events take place. We
discuss how a lepton and quark appear in the space constituted as a tessellation lattice of
primary topological balls – the only structure that mathematics (i.e. set theory, topology
and fractal geometry) offers to the constitution of ordinary physical space. Since leptons
and quarks emerge in the tessellattice from a topological ball, they must interact with
this substrate. The principles of the interaction of subatomic particles with space and
through space between themselves are considered in detail. The approach: i) states that
real quarks possess the integer charge ±e and they periodically change to the monopole
state (hence, canonical particles are dynamic dyons); ii) naturally solves the problem of
confinement of quarks; iii) reveals the dynamics of quarks in hadrons; iv) discloses an inner
structure of the proton and neutron; v) calculates the radius of the proton; and vi) derives
the nuclear forces as the result of both direct coalescence of surfaces of the nucleons and
the overlapping of spatial excitations (named inertons) generated by the nucleons at their
motion through the tessellattice. Experimental results showing nuclear transformations
in samples affected by artificially generated inerton fields are demonstrated.
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1. Introduction

In fundamental physics the Standard Model is treated as a basic model for the
description of elementary particles (see, e.g. Refs. 1). Three kinds of elementary
particles are leptons, namely: electron, muon and τ -lepton; besides, each lepton has
its own neutrino. Quarks with three colors (red, yellow, blue) and six flavors are u,
d, c, s, t, b. Each lepton and quark has the appropriate antiparticle. Leptons and
quarks are fundamental fermions. The electric charges of leptons are ±e, though by
definition quarks are characterized by the friction electric charges ±e/3 and ± e2/3.
The spin of leptons and quarks is the same, 1/2. Quarks and leptons are treated as
point particles [2].
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Leptons are able to interact through quanta of electroweak interactions, which
are the photon γ and W± and Z0 bosons. Quarks interact through quanta of strong
interactions, which are gluons, and can also interact through W± and Z0 bosons.
All these quanta are called fundamental bosons. The Standard Model includes a
primary particle called the Higgs boson, which is needed for an abstract formalism
to launch a family of massive particles.

A theory of hadrons was developing from earliest partons to modern confinement.
The parton model was proposed by Feynmann [3] to analyze high-energy hadron
collisions. Later on it was found that partons describe the same objects now known
as quarks and gluons. Literature on quarks and the appropriate science known as
quantum chromodynamics (QCD) is very rich (see, e.g. monographs [4,5]). QCD
studies different aspects of the interaction of quarks and hadrons.

On the other hand, one can read an interesting remark in Ref. 6: Jets probing
the deep structure of hadrons reveal that at scales down to 10−18 m matter indeed
shows a quark-gluon structure; however, QCD used at the analysis of the results is
working with a precision of only at a level of around 10%.

There also exist other approaches describing the behavior of quarks in hadrons,
which try to bring some physical ideas into the highly abstract formalism of QCD.
In the present work we briefly review approaches based on QCD, the Nambu–Jona-
Lasinio model [7, 8], the Skyrme model [9, 10], the MIT bag model [11-14] and the
topological soliton model [15], which are most accepted among physicists.

Nevertheless, in the foreground of particle physics, a significant gap remains
in understanding the causes of the stability of baryons, the quark confinement, the
nature of spin-1/2 of baryons and the origin of nuclear forces. The formalism of QCD
was developed based on quantum mechanics and quantum electrodynamics, which
themselves were elaborated in abstract phase spaces, not the ordinary physical space.
The standard model of particle physics combines all fundamental interactions in a
unified theory (the theory of everything). However, doing so the theory of everything
rests on complete undetermined basic notions, such as mass, particle, charge, lepton,
quark, Compton wavelength, de Broglie wavelength, wave-particle, matter waves,
wave ψ-function, spin, Pauli principle, etc. So, we have to keep in mind the necessity
of the theorem of something, which will clarify the fundamental notions of quantum
physics. Such a clarification can be possible only within the constitution of the real
physical space in which all physical processes occur. However, the study of physical
space and its relationship with the fundamental notions of quantum physics have so
far been beyond the study of particle physics.

Based on previous works of the author, it will be shown below how a theory of
the real physical space [16-19] and the submicroscopic concept [20-27] (which was
proven experimentally, see e.g. Ref. 28) allow us to unveil the mentioned issues in
detail.
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2. QCD

In 1970s Wilczek discovered a new dynamic principle called antiscreening, or asymp-
totic freedom. Wilczek [29] describes this principle as follows. Color charge of a
quark builds up its power to drive the strong interaction by accumulating a growing
cloud at larger distances. As the virtual particles in space respond to the altered
situation they rebuild a new cloud, moving along with the quark. The theories that
may display such behavior, i.e. asymptotic freedom, are called nonabelian gauge the-
ories, or Yang-Mills theories. These theories generalize quantum electrodynamics in
such a way that they postulate the existence of several different kinds of charge, with
complete symmetry among them. So instead of one entity, “charge”, the theories
use several “colors”. Besides, the theory suggests a family of color gluons (instead
of one photon, as is the case in electrodynamics). The color gluons themselves carry
color charges. Hence the nonabelian theories differ from electrodynamics in which
the photon is electrically neutral. Gluons in nonabelian theories play a more com-
plicated role in the dynamics of these theories than do photons in electrodynamics
and it is the effect of virtual gluons that is responsible for antiscreening/asymptotic
freedom (which is unknown in quantum electrodynamics). Asymptotical freedom al-
lowed the construction of a theory of the strong interaction, which describes baryons,
based on three quarks, and mesons, based on quark and antiquark. This becomes
possible in QCD, as the color charges of three different quarks gathered together can
cancel. Three colors exhaust all possibilities, which brings us to the gauge group
SU(3), with three colors, and eight gluons.

In QCD the problem of coupling of quarks is considered in the framework of the
gauge field theory that describes the strong interactions of colored quarks and gluon
fields and the appropriate Lagrangian is given by

L =
∑
n

ψ̄n, a

(
iγµ∂µ − gγ µ taA

C
µ

)
ψn, a −

∑
n

ψ̄n, amn ψn, a − 1
4
GA

µνG
Aµν (1)

where repeated indices (n, µ, and ν) are summed over. Here, γµ are the Dirac
γ-matrices. The ψn, a are Dirac spinors of the quark field of flavor n and mass mn,
with a color-index a = 1, 2, 3 (quarks come in three colors); AC

µ is the four potential
of the gluon fields, C = 1, . . . , 8 there are 8 kinds of gluons; the color field tensor
is

Ga
µν = ∂µA

C
ν − ∂νA

C
µ − gfABC A

B
µ A

C
ν ; (2)

fABC are structure constants of the SU(3) color group; ta are matrices, which are
generators of the SU(3) group; g =

√
4παs (ℏ = c = 1) is the color charge, i.e. an

effective constant of the strong force interaction.
A first-order perturbative QCD calculation, which is valid at very large trans-

ferred four-momentum Q, gives for the effective constant [30,31]

αs(Q
2) =

1

b ln(Q2/Λ2
QCD)

+ ..., (3)

where the free parameter in QCD, or the QCD scale parameter ΛQCD, which refers
to a particular definition of the effective coupling, may vary from 0.1 to 0.5 GeV,
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though researchers tend to the value of ΛQCD = 217 ± 25 MeV [32] or rather 220
MeV [33]. Bethke [33] emphasizes that if Q2 becomes larger, αs(Q

2) asymptotically
decreases to zero, but the constant αs(Q

2) increases at smaller Q2; for example, in
the case of the Z0 boson whose energy is 90 GeV, the constant αs(Q

2)|90 GeV = 0.12
and αs(Q

2)|35 GeV = 0.14 [34]. Bethke [33] mentions that αs(Q
2) can exceed unity

for energies in the range 100 MeV to 1 GeV; the energy scale below the order of 1
GeV is called the non-perturbative region where confinement sets in.

The spatial separation between quarks goes as

–λ = ℏ/Q. (4)

Expressions (3) and (4) show that at a very short distance and high value of
Q coupling between quarks decreases, vanishing asymptotically. At the limit of
very large Q, quarks can be considered to be “free”, which is called an asymptotic
freedom. On the other hand, at large distances, the inter-quark coupling increases
and in this case it becomes impossible to detach individual quarks from a hadron,
which is called a confinement.

The confinement is interpreted by the shrinking of gluon fields in an elastic string
(Fig. 1). The potential energy of a static qq̄ pair grows with the quark-antiquark
distance r as

V (r) = σr. (5)

Figure 1: Confinement phenomenon: two quarks are stretched forming a “string” in which
their gluon interaction becomes proportional to the distance R between them. The longer
the string, the stronger the attraction between the quarks.

The string tension σ is computed in continuum QCD. The inputs are the stan-
dard values of the vacuum condensates. The output is

√
σ ≈ 0.5 GeV and is very

insensitive to quarks. Numerical simulations on a lattice confirmed expression (5).
The lattice approach to QCD means that each quark occupies its own site (or

does not occupy it) in an abstract spatial lattice (see, e.g. Ref. 35, 36): the quark
field is defined on individual points x of the lattice and the appropriate quark is
connected with the neighbors by links [x, x±aeµ] where µ is the Lorentz index and
a is the size of the meshes of the lattice. A typical lattice constant a = 0.05−0.1 fm
is essential for accurate QCD simulations, though a ≈ 0.3− 0.4 fm also works quite
well; the challenge is to make the lattice spacing as large as possible while keeping
the discretization errors in the order of a few percent.

Non-perturbative gauge theory intractable calculations being considered on the
lattice QCD allow one to evaluate the path integral by stochastic simulation tech-
niques.
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String excitation energies can be estimated by the Wilson loop correlation func-
tion (see, e.g. Refs. 37-39). Wilson loops are essentially phase factors in gauge
theories. Wilson loops in QCD are associated with the phenomenon of a phase
change known as the Aharonov–Bohm effect [40] in quantum physics. QCD can be
reformulated by using the Wilson loops in a manifest gauge-invariant way.

Basically the static quark potential (5) can be presented by an asymptotic ex-
pansion [41]

V (r) = σ r − α/r + µ r−d +O(1/r2), (6)

where α/r is the quantum correction that characterizes the relativistic bosonic string
(Fig. 1) and µ r−d is a regularization-dependent mass.

The string tension σ is the subject of intensive theoretical and experimental
studies (see, e.g. Refs. 42, 43 and also works [44, 45]). The value of σ is evaluated as
a function of temperature and the string tension points compared with the behavior
of parameters of ferromagnets and superconductors relating them to confinement.

The confinement of quarks is a big challenge and researchers for more than 30
years try to describe it suggesting most fundamental approaches [44, 45]. Greensite
[44] reviewed the confinement problem in SU (N) lattice gauge theory. He notes that
a popular definition of the confinement is based on the fact that all the low-lying
hadrons fit nicely into a scheme in which the constituent quarks combine in a color-
singlet. No particles or gluons exist in a color non-singlet state. This actuality allows
one to identify the confinement with the more general concept of color confinement,
which means that all asymptotic particles are color singlets. The linear potential
V (r) ∼ σr is only one of a number of properties of the confining force; a complete
list includes the following: linearity of the static potential, Casimir scaling, N-ality
dependence, and string behavior: roughening. Vortex-limited Wilson loops can be
responsible for confinement to percolate through the lattice, though this creates a
difficulty associated with finite temperature (because in the time direction the length
of the lattice constant plays the role of inverse temperature and the change of the
length will represent a transition from the confining to the deconfining phase).

One of the oldest proposals for quark confinement is the confinement as an effect
due to abelian monopoles [44]; the idea is motivated by the squeezing of magnetic
fields into flux tubes in type II superconductors, and by the demonstrable con-
finement of heavy electric charge in a monopole plasma, which arises in compact
quantum electrodynamics in D = 3 dimensions. Greensite [44] emphasizes the ne-
cessity of centre symmetry: the existence of a finite string tension is related to the
behavior of the centre vortex free energy; the asymptotic string tension of static
quarks depends on their color charge only through the transformation properties of
the quarks under the centre subgroup.

‘t Hooft [46] reviews new ideas on dynamic mechanisms of the absolute con-
finement, such as i) stipulated by the lattice structure of QCD, ii) specified by a
topological phenomenon, iii) caused by a chain of gluons and iv) given by a renor-
malization of gauge-invariant effective actions.

In the lattice QCD the gauge field Aµ(x) is replaced by a connector operator
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U(x, µ) defined on the link [x, x+ aeµ]:

U(x, µ)
def
=

(
ig

∫ x+eµ

x

Aµ dx
µ

)
(7)

where g is the constant of interaction. The same link in the opposite direction
describes the inverse of the group element U. Lattice plaquettes U1U2U−1U−2 con-
tribute to the functional integral for an amplitude containing a quark antiquark pair.
Each plaquette gives a suppression factor 1/g2; a total suppression factor rises to a
power equal to the number of plaquettes needed to produce the surface in between(

1/g 2
)ℓ

= e−V (x1, x2) (8)

where ℓ is the distance between the quark lines; t is the interval in the Euclidean time
direction. Matrix elements of the operator e−tH include a potential term V (x1, x2)
that increases linearly with the distance ℓ between the quark lines. This means that
the present potential confines the interacting quarks.

A topological phenomenon is associated with the Higgs field potential

V (φ) = 1
2

(
φ∗φ− F 2

)2
(9)

where F is the vacuum expectation value of the Higgs field φ. The gauge transfor-
mation replaces the φ field of a vortex by a field dissolved in the vacuum, which has
φ → F everywhere. Such vortexes represent magnetic monopoles and the vortexes
possess end points. That is why in this pattern magnetic monopoles are tied together
by vortex lines and ‘t Hooft concludes: “Since a vortex carries energy proportional
to its length, one finds that in a Higgs theory, magnetic monopoles are absolutely
confined, exactly in the way one expects quarks to be confined in QCD”.

A chain of gluons implies that the energy of gluon fields in their environment
tend to infinity when the inter-quark distance goes to infinity. A confining potential
from the start is chosen in the form of a Coulomb potential, though this requires
justification. Further infrared renormalized procedures allows one to derive a Green
function that includes a Yukawa potential

G(x⃗− x⃗ ′) = δ3(x⃗− x⃗ ′) − 8πσ

α|x⃗− x⃗ ′ exp(−
√
2σ/α |x⃗− x⃗ ′|), (10)

which exactly shows the confinement.
A renormalization of gauge-invariant effective actions is reduced to the consid-

eration of a flux tube (a “tube” between two quarks in Fig. 1) filled with a field of
the energy density, the D-field, where the energy density is defined as W (D) [46].
The vortex with given total flux Q=DΣ spreads over a surface Σ in such a way that
the total energy is minimized. Then the energy per unit of length of this vortex is

ρstring = min (ΣW (D)). (11)

The functional on the right hand-side of Eq. (11) has a non-trivial minimum,
which is reached at special conditions and can be associated with the confinement.
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A supergravity background that produces linear confinement of quarks in four
dimensions has recently been presented [47]. El Naschie [48] interprets quarks con-
finement involving a phase transition of quantum spacetime at the Planck scale at
which the confinement is absolute at a certain energy scale limit where the Planck
energy is MP = 1019 GeV.

As point out Alkofer and Greensite [45], the confinement problem becomes one
of the truly fundamental problems in physics. They mention that quark confine-
ment is the essential link between the microscopic quark-gluon degrees of freedom of
QCD, and the actual strong-interaction spectrum of color-neutral mesons, baryons,
and nuclei. They conclude as follows: “Until this phenomenon is well understood,
something essential is still lacking in our grasp of the foundations of nuclear physics,
and the deeper mechanisms of nonabelian gauge theory. Although the confinement
problem is hard, the solution is important, and well worth pursuing. But it is cer-
tainly not excluded that progress may come from some quite different direction”
[45].

3. Other views on quarks and hadrons associated

with QCD

In the physics of quarks the researchers initially consider the interaction between two
quarks, then, as a second step, one introduces a third quark to this diquark system,
etc., in order to obtain the complete wave function of a baryon; this method is a good
approximation as long as three-body interactions are rather small compared to two-
body interactions [49]. The introduction of three colors for each quark complicate
the study, as a diquark system becomes non-distinguished from an antiquark.

Modern experiments [50], first of all scattering experiments of electrons and
positrons, provide support for the standard model of six quarks with three colors.
The idea of color charge allowed one to explain how quarks could coexist inside
some hadrons in otherwise identical quantum states without violating the Pauli
exclusion principle. Each flavor of quark belongs to the fundamental representation,
SU (3), and contains a triplet of fields ψ = (ψ1, ψ2, ψ3). These three indices are
usually identified with the three colors, such that after gauge transformation, the
new colors are linear combinations of the old colors. Nevertheless, the standard
model of particles allows also an arbitrary number of colors [51].

Moreover, the deep inelastic experiments do not rule out even integer-charge
quarks [52-55]: in higher orders of perturbation the integer-charge quark model
gives results closer to those of the fractional charge quark model and the properties
like factorization of mass singularities, which have been shown for the fractional
charge quark model, assume also for the integer-charge quark theory. Rajasekaran
and Rindani [52] point out that a clear and unambiguous high-energy test, which
distinguishes the one model from the other, has not yet been found: “As long as it
leads to almost similar empirical phenomena to that of the fractional-charge quark
model, it is going to be very difficult to rule it out experimentally. It may even be the
right model! Although exact SU (3)c symmetry appears to be an elegant hypothesis,
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exact SU (3)c×U(1) does not look so elegant. Why can’t the degenerate gluons and
photon mix and break the symmetry?”

Thus in QCD the integer-charge quark is not ruled out, which was shown by
conventional field methods [52-55]. Integer charge quark theories (ICQ) fit experi-
mental data far better than the standard model does [54, 55]. In particular, Ferreira
[54] have reviewed the evidence for fractional quark charges and argued that they
are not conclusive. On the other hand since ICQ theories are renormalizable they
demonstrate a good comparison with experiment data, which is held for any order
of perturbation theory; ICQ theories also predict identical rates for meson radia-
tive decays. In the end Ferreira [54] states: “Regardless of whether one believes in
ICQ models or not, it seems clear they do a better job than the Standard Model at
describing the two-photon data.”

We will see that violating the Pauli principle is quite possible and even necessary
in the dynamics of quarks.

A light-front approach [56] to QCD formulates light-front Hamiltonian as a com-
plementary approach to the well-established lattice gauge method. It is a Hamil-
tonian method, formulated in Minkowski space rather than Euclidean space. The
essential ingredient is Dirac’s front form of Hamiltonian dynamics where one quan-
tizes the theory at fixed light-cone time τ = t+z/c rather than ordinary time t. The
approach offers access to the hadron’s nonperturbative quark and gluon amplitudes
that allow testability in experiments.

The Nambu–Jona-Lasinio (NJL) model [7, 8] is considered to be a model for the
low-energy regime of QCD. The NJL Model is a non-renormalizable quantum field
theoretical model for dynamical chiral symmetry breaking; this model picks chiral
symmetry but does not provide a mechanism for confinement and, consequently, the
NJL model needs a plausible explanation for this neglect [57]. In the mean-field
approximation the Lagrangian density is

L = L0 + ψ̄M ψ (12)

where the first term is the conventional Dirac Lagrangian density and the “effective”
mass M satisfies a self-consistent equation

M =
2GM

π2

∫ Λ

0

p2 dp√
p2 +M2

(13)

where G is a parameter with the dimension of square length. Eq. (13) has a non-
vanishing solution in the case when G > Gcritical. For these values of the coupling
constant, chiral symmetry is dynamically broken.

The NJL model further describes [58] dynamical quark mass generation and
spontaneous chiral symmetry breaking and includes effects of the axial U(1)
anomaly; mesons emerge as quark-antiquark modes; the quark-diquark structure
of baryons is developed, and a brief summary is given on baryonic solitons as they
result from the NJL model. A semi-classical NJL model of an instanton liquid for
mesons and quark condensates in which lowest multi-quark interactions dominate
look quite reliable [59]. Other aspects of the NJL model were considered in Refs. 59,
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60. Quark droplets of finite volume were formulated in the NJL model with a basic
set of the quark wave functions in the chiral bag model in work [61]; chiral symme-
try breaking for the finite volume bag was discussed in a mean field approximation,
effects of the pion cloud including the chiral Casimir effect were investigated, and
physical quantities of the quark droplets, such as masses and radii, were obtained
for baryon numbers A ≤ 5.

The Skyrme [9, 10] field theory has static solutions of a singular nature, but
finite energy, characterized by spin directions. He introduced an additional term
in the field gauge theory, which makes it possible for baryons to interact with each
other via the exchange of mesons. Skyrme [10] introduced the Lagrangian

L =
f 2
π

4
Tr [∂µU ∂ νU ] +

1

32g2
Tr [U∂µU, U∂νU ]

2 (14)

where the fπ is the pion decay constant, g is the constant known as the ρ-π-π
coupling, the field

U = exp {i τ · φ/fπ} = (s + i τ · π) /fπ, (15)

τ is the vector containing The Pauli matrices, π the pion field. The first term in the
Lagrangian (14) is the usual nonlinear sigma model; the second part was introduced
by Skyrme [10].

Skyrme revealed a family of classical static solutions approximating QCD at low
energies, which were called skyrmions. The appropriate equation of motion derived
from the Lagrangian (14) has the form

US = exp { i τ · r̂ F (r)} , (16)

where F (r) is a radial function satisfying certain boundary conditions [62].
Topological soliton solutions, or topological charges, minimize the energy and

may be identified as the baryon number. The physical interpretation of these soli-
tons is still not quite clear, nevertheless, most recent studies account for skyrmions
rather as coherent states of baryons and excited baryons [62]. This model describes
hadrons and their interactions without taking their quark content into account. Nev-
ertheless, electromagnetic properties of baryons calculated with the Skyrme model
are in agreement with experimental values for a number of baryons [63]; besides,
Weigel [63] shows that the NJL model can be employed to involve solitons in a
microscopic theory of the quark. One more application of the Skyrmion model is
a possibility of Skyrmion (neutron) stars that can be looked at as being made of
fermionic soliton objects [64, 65]. It has recently been found [66] that the single soli-
ton in the Skyrne model is composed of N partons that are topologically confined;
multi-soliton solutions have been computed and related to polyiamonds, which are
plane figures composed of equilateral triangles joined by common edges. It is shown
that those solitons may be viewed as pieces of a doubly periodic soliton lattice.

The MIT bag model [11-14] was developed by nuclear physicists and reflects
major peculiarities of nuclei. It describes the particles as composite systems with
their internal structure that can be associated with quark and gluon field variables.
In the model, quarks are forced by an external pressure on the side of a vacuum and
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are able to move only in a closed spatial region, i.e. a bag, in which quarks occupy
single particle orbitals. When all the quarks are in the ground state, the shape of
the bag is spherical.

Each quark is described by the Dirac field inside a bag,(
−i γ µ ∂

∂xµ
+m

)
ψa(x) = 0. (17)

The boundary condition
i γ⃗ · n⃗ ψa = ψa (18)

where γµ are the Dirac matrices and n⃗ is the unit normal vector. ψa(x) is discontin-
uous across the surface of the bag, since ψa(x) = 0 outside. Eq. (17) allows one to
calculate the energy and momentum that flows through the surface. Momentum and
energy flow inside the hadron studied are characterized by a stress tensor T µν

Dirac(x).
The total energy and momentum of the hadron should not flow through the surface.
The flow is given by nµT

µν
Dirac calculated on the surface; this flow is reduced to the

equation

nµ T
µν
Dirac =

1
2

∂

∂xν

(∑
a

ψ̄a(x)ψa(x)

)
. (19)

Since ψ̄aψa = 0 on the surface, its derivative lies along the normal,

∂

∂xν

(∑
a

ψ̄a ψa

)
= nν 2PDirac. (20)

Thus nµT
µν
Dirac = nν PDirac, which allowed the authors [11-14] to recognize PDirac

as a normal pressure on the surface of the bag. The conservation of energy and
momentum within the hadron requires an introduction of the other kind of a pressure
to compensate the Dirac pressure PDirac. Thus, it was postulated that the total
energy momentum tensor consists of two parts

T µν
hadron =

{
T µν
Dirac − gµνB (inside)

0 (outside)
(21)

Here, B is a universal constant with the dimension of pressure, E/V (in units of
ℏ = c = 1, B 1/4 has the dimension of mass). Thus the balance equation becomes

B = −1
2

∂

∂r

(∑
a

ψ̄aψa

)
= PDirac. (22)

If PDirac is produced by the energy and momentum flow inside the hadron, B is
a fitting parameter, which has a volumetric nature and can be interpreted as the
pressure of an outside vacuum on the whole bag (or more exactly, the bag surface).

Eqs. (17), (18) and (22) can be solved for the spherical shape (r = R) and in
the ultrarelativistic limit (m→ 0). In this case the quarks occupy the lowest mode
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with frequency ω = 2.04/R. Then the energy of the hadron is directly derived from
the equation

P 0 = E =

∫
d3x

(
T 00
Dirac +B

)
, (23)

such that

En = n
2.04

R
+

4π

3
BR3 (24)

where n is the number of quarks in the hadron. The first term in expression (24)
is usual in quantum mechanics; it represents discrete energy eigenvalues, i.e. the
term depicts the kinetic energy of the quarks that occupied the lowest orbital. The
second term in expression (24) expresses the stabilizing potential energy that results
form the external pressure. Thus the introduction of a phenomenological parameter
B could guarantee the implementation of the boundary condition.

Minimizing Eq. (24) with respect to R makes it possible to obtain expressions
for the radius of the hadron and its energy as a function of the parameter B and
the number n of quarks:

Rn = [2.04 n/(4πB)] 1/4 , En = 4
3
(4πB)1/4 (2.04 n)3/4 (25)

Introducingm ̸= 0, the angular momentum and the interaction with color gluons
complicate the problem. The bag model was further developed by many researchers
(see, e.g. Refs. 67-71). In particular, in the book [72] the chiral bag model was
considered as a hybrid model of the MIT bag model and the Skyrme model, which
allowed a solution in a special configuration called the hedgehog ansatz for a solitonic
solution for the nucleon.

A review [73] on topological soliton models discloses the foundation of the ap-
proach and the application of topology to classical field theory; the main accent is
on a property called homotopy, which describes how two maps (such as two different
field configurations) can (or cannot) be continuously deformed into each other. In
the context of physics, this deformation is often interpreted as the time evolution of
the system. Baryons allow description in chiral topological soliton models in which
they appear as topological excitations of an effective action that depends only on the
chiral field U(x). The study is based first on the Skyrme action (with an addition
of some others) [74, 75]. In the soliton picture the strong interaction properties are
used; baryons are computed following the SU(3) collective coordinate approach to
the Skyrme model. In paper [75] hyperon masses were described in the topological
soliton model; these masses are very sensitive to parameters of the gluon condensate,
which contrasts with the insensitivity of the soliton properties to coupling of quarks
and gluons though a hypothetical particle ‘dilaton’. The bag formed by the scalar
field dynamically and emerged as very shallow.

On the other hand, a very popular approach also based on a non-topological
soliton, which represents a field configuration possessing, contrary to a topological
one, a conserved Noether charge and stable against transformation into usual parti-
cles of this field [76]. The mass sum of free particles with the charge Q exceeds the
total energy of the non-topological soliton so that the soliton becomes energetically
favorable to exist.
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4. Leptons and quarks in the tessellattice

A detailed mathematical theory of the real physical space based on topology, set
theory and fractal geometry, was developed in works [16-19]. It was shown that the
space is not a vague vacuum, but a substrate arranged as a mathematical lattice
of primary topological balls (Fig. 2). This lattice was called a tessellattice; it
was postulated that the size of a cell is equal to the Planck length

√
ℏG/c3 ∼=

1.616× 10−35 m.

Figure 2: Topological ball and the tessellattice formed of such balls.

In the tessellattice balls are found in a tight state, which corresponds to a de-
generate state of the real space. This space holds for a quantum void since on one
hand, it provides a discrete topology, with quantum scales, and on the other hand it
contains no “solid” object that would stand for a given provision of physical matter.
The appearance of a stable local deformation is possible when a transformation of
a cell involves some iterated internal similarity. Then the appropriate cell becomes
a particable ball, which thus is represented by a nonhomeomorphic transformation
in a continuous deformation of space elementary cells.

Since we have introduced a particle in the tessellattice, we must provide it with
physical properties. First of all this is mass: The mass mA of a particulate ball A is
a function of the fractal-related decrease of the volume of the ball:

mA ∝ (V deg. cell/V part) · (efract − 1)efract> 1 (26)

where V deg. cell is the typical average volume of a cell in the tessellattice in the
degenerate state; V part is the volume of the kernel cell of the particle; (e) is the
Bouligand exponent, and (efract − 1) the gain in dimensionality given by the fractal
iteration (just a volume decrease is not sufficient for providing a ball with mass,
since a dimensional increase is a necessary condition; there should be a change in
volumetric fractality of the ball [17, 18]).

Therefore mass appears as a deformation of a cell, i.e. at the volumetric fractal
contraction of the cell. This is typical for leptons, namely, V deg. cell/V lepton > 1
determines the lepton’s mass (26).

In the tessellattice a lepton is a contracted kernel-cell (Fig. 3a). Surrounding
cells compensate this local deformation by morphic changes; namely, they move from
the initial equilibrium positions and are stretched, experiencing a certain tension
(rather a radial tension) compared to cells in the degenerate sate. These surround-
ing stretched cells form a peculiar deformation coat with a radius identified with
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Figure 3: Lepton (a) and quark (b) in the tessellattice. Each lepton is specified by its
own quantum size of the kernel cell and the same for quarks. The lepton’s kernel cell (a) is
less than a degenerate cell of the tessellattice; in the deformation coat all cells around the
kernel’s lepton-cell are stretched, they have a certain tension (radially “inflated”) compared
to cells in the degenerate state. The quark’s kernel cell (b) is larger than a degenerate cell
of the tessellattice and one can anticipate a few quantum sizes; in the deformation coat
all cells around the kernel’s quark-cell are compressed (radially “contracted”) compared
to cells in the degraded state. The size of the deformation coat is defined by the Compton
wavelength λCom = h/(mc). For the electron: λCom el. = 3.77 × 10−13 m; for the light
quarks u and d: λComu, d ≈ 3.77× 10−14 m.

the particle’s Compton wavelength λCom, lept = h/(m0, leptc) (note this radius man-
ifests itself through the experiments on light scattering by particles). It seems the
contracted kernel-cell is unstable to radial standing oscillations that spread the de-
formation V deg. cell/V lepton, i.e. the proper lepton’s mass m0, throughout the whole
deformation coat [23]: the mass m0 decays in the deformation coat such that its
pieces are dancing in the deformation coat hopping from cell to cell from the kernel-
cell and back.

In the case of quarks the situation is reciprocal: the quark’s kernel cell has
volume bigger than the average volume of a degenerate cell, i.e. V quark/V deg.cell > 1
[17, 18]. Quarks are inflated objects (Fig. 3b).

Since the notion of mass is associated with the decrease of volume of a cell,
quarks definitely do not possess mass as such, which is in agreement with require-
ments of QCD [77, 78]; quarks can be described in terms of energy. Quarks manifest
themselves through the unification, which produces matter - mesons, protons, neu-
trons, etc. That is why a deformation coat of contracted (i.e. massive) cells around
unified quarks must exist as well. Thus the mass comes to the quark through its
deformation coat in which cells are contracted, i.e. are massive.

Due to the inflated kernel-cell, cells around the quark’s kernel-cell move apart

13



from their equilibrium positions. These moved cells should be a little bit contracted
in the framework of the quark’s Compton wavelength λCom,quark and the total sum
of contracted cells has to compensate the inflation of the kernel-cell. Hence in
the quark’s deformation coat contracted cells around the kernel-cell represent the
quark’s total mass m0,quark (see the definition (26)) and this mass defines the value
of the quark’s Compton wavelength λCom,quark = h/(m0,quarkc). It is reasonable to
assume that the inflated kernel-cell is unstable to radial standing oscillations, as is
the case for a lepton. At such oscillations, bits of the inflated state of the kernel-cell
spread all over all other cells of the quark’s deformation coat. This means that the
quark’s deformation coat filled with volumetric inflated excitations can be treated
as a bubble.

A different fractional volume of the appropriate kernel-cell characterizes a set of
leptons, i.e. the more massive lepton, the smaller the characteristic radius of the
appropriate kernel-cell. In the case of quarks the situation is opposite: the larger
the radius of the kernel-cell, the heavier the quark.

4.1 The behavior of leptons

In the case of leptons it has been shown [23] that the deformation coat formed
around the particle participates in a common oscillation process of all cells of the
coat. This process is described by a single vibration mode. Further studies [27]
showed oscillations of cells in the deformation coat obey a standing spherical wave,
i.e. the amplitude of oscillation of mass is inversely proportional to the distance
from the central point, m ∝ 1/r.

The motion of a lepton in the tessellattice was studied in works [20-24]. The
developed submicroscopic mechanics is specified with the interaction with space,
i.e. the tessellattice. As a result, we arrived at the de Broglie’s relationships for a
particle

E = hν, λ = h/(mυ), (27)

which in fact demonstrates a discrete structure of space, because λ plays the role of
a spatial period of the particle: each odd section λ/2 the particle emits excitations
(due to the interaction with space) and then each even section λ/2 it absorbs them
back. Relationships (27) allow the derivation of the Schrödinger equation, as was
shown by de Broglie [79]. Excitations emitted by the particle were named inertons.
Submicroscopic mechanics enables us to determine a shape of the ‘particle-inerton
cloud’ system: the inerton cloud is extended to the distance λ along the particle’s
path and to the distance

Λ = λ c/υ (28)

in transversal directions. Hence we know that the shape of the system in question
resembles a spindle and we know its size.

The motion of such extended particle looks like the motion of a liquid particle in
a continuum. The equilibrium state of volumetric fractals, which introduce defor-
mations in cells of the liquid particle, is related to the value of mass and therefore
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determines a density ρ of this liquid particle. In the process of motion these de-
formations (volumetric fractals) in the appropriate cells have to tense, which will

produce a displacement vector ξ⃗ for our liquid particle. For the description of such
moving liquid particle we may employ the known results of field theories used in
hydrodynamics. Indeed, we may begin with the Lagrangian density (see, e.g. Ref.
80)

L = 1
2
(
˙⃗
ξ · ˙⃗ξ) − 1

2
υ2 (∇ · ξ⃗)2 (29)

where ξ⃗ is the displacement vector, or tension of our continuous system in the place
occupied by the liquid particle studied; υ is the velocity of the liquid particle. Matter
is available only in a volume V of the space occupied by the particle; let the matter
be characterized by the density ρ and let ρ0 be its initial, or equilibrium value. Then
the continuity equation is

ρ̇ + ρ0 (∇ · ˙⃗ξ) = 0 . (30)

The Euler-Lagrange equations constructed on the basis of the Lagrangian density
(29) and Eq. (30) culminate in equations

¨⃗
ξ − υ2∇ · (∇ · ξ⃗) = 0, (31)

∆ρ− ρ̈/υ2 = 0. (32)

The most interesting is Eq. (32) that describes the propagation of density of the
{particle-inerton cloud} system; it takes the form of the wave equation for sound
waves. The solution to Eq. (32) can be searched proportional to | cos(4π ν t)|, which
results in

∆ρ − 16 π 2

λ 2
ρ = 0 (33)

where we use the correlation ν = υ/λ; here ν is the frequency of the wave, λ is
the wavelength and υ is the sound velocity. Note that the role of the frequency ν
of this peculiar sound wave plays the frequency of collision 1/(2T ) of the moving
particulate cell (the particle kernel, Fig. 1) with its inerton cloud [20-23].

Eq. (33) can be modernized by using the second relation in de Broglie’s rela-
tionships (27)

∆ρ − 16 π 2m2υ 2

h 2
ρ = 0. (34)

Then utilizing the energy conservation law for our moving particle

E = mυ2/2 + V (35)

where V is a potential energy, we finally obtain instead of Eq. (33) an equation

∆ρ − 2m

ℏ2
(E − V )ρ = 0, (36)

which appears as the Schrödinger wave equation, but the role of the wave ψ-function
is played by the density ρ of the {particle + inerton could}-system; since the ψ-
function is dimensionless, the normalized function ρ/ρ0 should exactly correspond
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to it. Note in Eq. (36) in the function ρ the value of the mass field varies (rather
than the volume V ), however, in the second term the value of the parameter m
must remain fixed (m represents the initial value of mass, i.e. the particle’s inert
mass m = m0/

√
1− υ2/c2). A complex part of ρ means that the appropriate part

of the particle’s mass is transferred to a tension of the surrounding space.
Thus we return a physical sense (Fig. 4) to the wave ψ-function, whose module

so far was interpreted as a probability of the particle location after Max Born since
1926 [81, 82]. The physical pattern looks as follows: a moving particle is surrounded
with a cloud of excitations (named inertons in the author’s works), which exactly
corresponds to the electron described by Poincaré [83], who hypothesized that the
moving electron should create a cloud of excitations in the ether. De Broglie’s
relationships (27) bound the particle’s parameters E and p with parameters of the
particle’s excitations – the section λ (the de Broglie wavelength that can be called
an amplitude of the particle) in which the particle’s velocity decreases to zero and
then increases to the initial value υ again, and the frequency ν of collisions of the
particle with its cloud of inertons. Relationship (28) connects the amplitude Λ of
the inerton cloud with the particle’s amplitude λ, the speed c of the cloud’s inertons
and the speed υ of the particle.

Figure 4: Particle moving together with its inerton cloud in the real space. The ψ-wave
function is a project of the {particle + inerton cloud}- system to an abstract phase space.
The particle moves squeezing in between cell, though the state of deformation coat adjusts
to the particle in any point of the particle’s path. Inertons migrate hopping from cells to
cells like excitons in molecular crystals.

In special relativity a vacuum is invariant under a Lorentz transformation and
this transformation influences space that undergoes a Lorentz contraction. In the
case of the tessellattice, which substitutes a vague vacuum, the Lorentz contraction
is passing on to the moving object, i.e. the object itself experiences the Lorentz
contraction. How this happens has been shown in Ref. 17: the hidden structure of
the initial Lagrangian

L = −m0c
2
√

1− υ2/c2 (37)
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emerges owing to the introduction of the interaction of the moving particle with
space (i.e. the tessellattice)

L = −m0c
2

√
1− 1

m0c2

{
m0ẋ2 +m

(in)
0 ẋ(in) 2 − 2π

T

√
m0m

(in)
0 (xẋ(in) + υ0x(in))

}
(38)

In expression (37) there is a process, which is hidden inside the expression: the
moving particle emits its inerton cloud (due to the friction with space) and hence
we have two objects that travel together: the particle (mass m0) and its inerton

cloud (mass m
(in)
0 ). The motion is specified with the interaction

√
m0m

(in)
0 that

takes place in the time interval T, which becomes the time of collisions (and T −1 is
the frequency of collisions). All this occurs in the section equal to the particle’s de
Broglie wavelength λ. The described inner kinetics is presented in the Lagrangian
(38). If the path of the particle is much longer than λ and the scale is rather close
to macroscopic, we may revert back to the classical consideration (37). The Euler-
Lagrange equations obtained on the basis of the Lagrangian (38) allow the study of
the system {particle + inerton cloud} in detail [21-24].

High-energy physics is expressed in a relativistic form. The energy expression
(35) takes a Newtonian form. In papers [17, 21-24] it is shown that owing to the
transformation of the relativistic Lagrangian (37) to the form (38), the kinetic energy
of a very fast particle (υ → c) emerges as follows

E = 1
2
mẋ2, m = m0/

√
1− υ2/c2, (39)

though the total energy is still

Etotal = mc2, m = m0/
√

1− υ2/c2, (40)

where at the approximation υ → c the kinetic energy (39) is approaching to the total
energy (40). Therefore, all is correct when applying expression (35) to high-energy
physics.

Let us list the main important properties of leptons revealed in the framework
of submicroscopic mechanics developed in the tessellattice.

The kernel-cell representing the particle changes along a particle’s path as Figure
5 depicts. Thus spin-1/2 is a dynamic characteristic, which can be associated with
periodical oscillations of the surface state of the particle’s kernel-cell (electron, muon,
τ -lepton) along the particle’s path [22, 23]: a mobile state (when it possesses the
velocity in even points of the de Broglie wavelength λ/2 · l where l = 0, 2, 4, ...)
changing to a stationary state (when the needles though are bended, but immobile
in the odd points of the de Broglie wavelength λ/2 · l where l = 1, 3, 5, ...). The
integer spin would belong to particles combined of two Fermi particles. Nevertheless
in the case of a photon the spin-1 is only words; no any inner physical behavior for
this quasi-particle (the electromagnetic field particle) can be suggested. The phrase:
“photons obey the Bose-Einstein statistics” means only that they are quasi-particles
without spin-1/2 whose states change discretely. In the case of cold diluted gases
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0 λ/2 λ x

Figure 5: Particle radius oscillates along the de Broglie wavelength λ.

that form a Bose-Einstein condensate, the situation is not associated with the value
of spin as well: each atom irradiates its proper inerton cloud that then is completely
absorbed by the neighbor atom [24]. It seems the Bose-Einstein statistics describes
quantum particles/quasi-particles that do not have spin at all.

The value of mass m, a total fractal volumetric deformation of the particable
cell, oscillates along the section λ as well: the mass m periodically changes from m
to 0 and then again to m (Fig. 5), though the tension of the particle varies from 0
to ξ and again to 0 [28].

The electric charge is the state of the kernel particle associated with its surface
[26]: a positively changed particle has the surface of a typical chestnut – amplitudes
outside; a negatively charged particle has the surface on which surface amplitudes
are oriented inside the appropriate topological ball. The value of charge e oscillates
along the section λ as well: the charge periodically changes from e to 0 (in even points
λ/2 · l, where l = 0, 2, 4, ...), though the tension electric state, which corresponds
to the magnetic monopole state of the particle, varies from 0 to g (in odd points
λ/2 · l, where l = 1, 3, 5, ...), see Fig. 6.

0 λ/2 λ x 0 λ/2 λ x

Figure 6: Motion of the electrically changed particle: positive (left) and negative (right).
The elementary charge periodically changes to the magnetic monopole state (in odd points
λ/2 · l of the path, where l = 1, 3, 5, ...); two possible magnetic polarizations (right and
left) are shown. So the charged particle is a dyon (it possesses both electric and magnetic
charges).

The photon and the inerton are shown in Fig. 7 (more amply read in papers
[25, 26, 28]). These neutral quasi-particles (though the photon is electromagnetically
polarized) migrate by a relay mechanism hopping from cell to cell in the tessellattice.
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Figure 7: Motion of two field particles: the photon and the inerton, which are basic
quasi-particles of the tessellattice. The photon’s polarization periodically changes between
electric (in even points of its path, λ/2 · l, where l = 0, 2, 4, ...) and magnetic (in odd
points of its path, λ/2 · l, where l = 1, 3, 5, ...).

4.2 The behavior of quarks

An important provision of the submicroscopic concept stated in the previous sub-
section is the interaction of a moving particle with the space that is a substrate
constituted in the form of the tessellattice. Such an interaction must be presented
in the case of a moving quark as well. Thus the interaction with the tessellattice
has to introduce some nonlinearity in the behavior of quarks.

As seen from Fig. 3b the quark is in fact a bubble in the tessellattice. It is rea-
sonable to assume that by analogy with leptons, its kernel cell constantly exchanges
with the quark’s coat by excitations: the inflated state periodically decomposes and
inflated excitations spread and oscillate in the medium of compressed (massive) cells
of the quark’s deformation coat. Due to the central symmetry, such oscillations of
inflated excitations can be compared to oscillations of a gas in a real bubble, in
which the gas oscillations obey the inverse law, ∝ 1/r. Hence the vibration energy
of the quark

Evib ∝ 1/r. (41)

These excitations are ‘inflated inertons’, or ‘inverse inertons’; below we will name
them qinertons (quark-inertons).

The naked quark (Fig. 3b) is unstable and collapses under the pressure of the
whole space. But interacting with another partner(s) they jointly form a stable
hadron. The nature of quark confinement is visualized with the use of an elastic bag
(bubble) that allows the quarks to move around freely; the bag-bubble is stabilized
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Figure 8: Agglutination of two bubbles with quarks located at the bubbles’ centers.

against the pressure of the confined hadron constituent fields by vacuum pressure
and surface tension [67].

Let two bubbles interact (see, e.g. Ref. 84), which means that their surfaces
overlap forming a structure shown in Figure 8. In the place of touching the bubbles
make a channel with a cross-section πε2. Disappearance of two borders between the
bubbles in a local place means that the energy of the bubbles decreases to the value
of ∆E = −2γπε2 where γ is the coefficient of the surface tension of the bubble.
If we put 2χ << 2R, where R is the radius of the bubble and χ is the range of
overlapping of the bubbles, this will mean that the total fusion of the bubbles does
not occur. Then from the equality R2 = ε2 + (R− χ)2 we get ε2 ∼= 2Rχ. Hence the
energy of attraction of two bubbles becomes

∆Eatt. = −2 π γχ · (2R− χ) ≈ − 4πγχR (42)

and R is the radius of the quark’s bubble (which can be associated with the quark’s
Compton wavelength). In Eq. (42) substituting R by r (the distance between the
quarks) and putting for the coefficient 4πγχ = σ, we obtain

∆Eatt. = −σ r. (43)

Combing Eqs. (43) and (41) we arrive at the static quark potential (6), which
we will discuss in detail below in section 4.3.

So expressions (43) and (41) result in the static quark potential (6). Thus the
confinement, i.e. a linear dependence of the interaction energy of quarks on a dis-
tance r, is quite natural and derived from the geometry of the contact of two quarks
solvated with the quark’s proper excitations named qinertons. The interaction pro-
portional 1/r is caused by the emission of standing spherical waves of qinertons by
a quark in the quark’s bubble. This is shown in Fig. 9.

Each quark experiences an outside compression pressure

Pcompr = P0 + 2 γ/R (44)
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a b

Figure 9: Confinement of quarks (which is explained in Fig. 8) when they interact with
the static potential V (r) ∝ r (a); free quarks when they interact with a static potential
V (r) ∝ 1/r (b).

on the side of the tessellattice and the bubble surface.
Let us consider a full merge of bubbles. Let N be the number of cells contained

in the bubble. qinertons migrate through these cells and these excitations can be
treated as analogous of gaseous molecules in a soap bubble. Therefore we may
associate the number N of these excitations in the bubble with its volume 4πR3/3,
the pressure P produced by these excitations and the temperature Θ:

P 4πR3/3 = NkBΘ (45)

where kB is the Boltzmann constant. From Eq. (45) we get the pressure in the bubble
P = 3NkBΘ/(4πR

3). The equality of the compressing Pcompr and the stretching P
pressure allows us to derive the number of qinertons N via other parameters:

N =
4πR3

3 kBΘ

(
P0 +

2 γ

R

)
. (46)

The merger of n bubbles is an efficient process. The number of qinertons in a
resultant bubble with a radius R is ℵ = nN , which allows us to derive an equation

2 γ

P0

=
nR3 −R3

R2 − nR2
. (47)

In order to decrease the energy of the bubbles merged together, i.e., reduce
pressure on them on the side of the surface and the tessellattice, it is necessary that
the numerator and the denominator in Eq. (47) are negative; this is possible when
the following inequalities are held (see Ref. 84, p. 37):

R3 > nR3, R2 < nR2. (48)

Applying inequalities (48) to the problem of quarks, we obtain for the meson
and the nucleon, respectively:

21/3 < R/R < 21/2, 31/3 < R/R < 31/2. (49)
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Therefore, the united bubble is characterized by a lower Young-Laplace pressure on
the quark, 2γ/R < 2γ/R.

Besides, the agglutination of the bubbles allows the quarks to gain an angular
motion, which seems to become the major stabilizing factor for existence of the
bubbles in the agglutinated state. Indeed, a pair of the agglutinated bubbles, which
is extremely quickly rotated, exhibits the integral of the moment of momentum
J ̸= 0. Such a characteristic is lacking for a single quarkable ball in the tessellattice
in which a ball (a cell of the tessellattice) is deprived of the opportunity to rotate.
That is why the compressing pressure Pcompr at which outside balls of the tessellattice
attack the rotating quarks’ bubble does not have enough power to collapse the
bubble. The equivalent of the sound velocity for the tessellattice is the velocity of
light c; hence with this velocity surrounding balls attack the bubbles. The energy
of hadrons is hundreds of MeV, which means that the velocity of rotating quarks
in them υquark ≈ 0.997 c. These two velocities are very close to each other and,
therefore, only the vortex state of the quarks can keep the bubbles from collapsing.

As we mentioned above, studying the quark systems, researchers initially con-
sider the interaction between two quarks, then add a third quake, four, etc., which
is needed to arrange a wave function of the baryon studied. Quarks are treated as
points or rather pseudo-points. The main task is the calculation of the eigenvalue
and the binding energy of quarks. But at such an approach diquark system becomes
non-distinguished from an antiquark.

The idea of diquark and the achievements of submicroscopic mechanics in the
realm of leptons allow us to reconsider the approach to the interaction of quarks.
Indeed, the submicroscopic consideration of electrodynamics shows that magnetic
monopoles are real entities [26] (Fig. 6), though they are hidden in the inner points
of the path of a charged particle. In other words, the moving charged particle
periodically changes its charge state to the monopole state. The surface structure of
quarks should be the same as in the case of leptons, i.e. needles directed inside (the
negative charge) or outside (the positive charge). The combed needles correspond
to the magnetic monopole state.

The motion of quarks (Fig. 9) should also obey submicroscopic mechanics, as
described above for the case of leptons, because the quark is surrounded with its
qinertons and its motion occurs in the tessellattice, which all together is the quark’s
wave function. This cloud as a whole can be associated with a gluon of QCD. The
qinertons also carry electromagnetic properties, as the quark is a charged particle.
So, the electrodynamics of a quark is the same as for the electron and positron
(Figs. 6, and 7). This means that the electric charge of quarks is integer: ±e
(neither ±2e/3 nor ±e/3). Below we put for the quark u the charge +e, for the
quark d the charge −e. The antiquark ū has the charge − e and the antiquark d̄ has
the charge + e.

Then the structure for the lightest π-mesons can be presented as follows:

π0 = du, π+ = ugd, π− = ū gd̄ (50)

where gd and gd̄ are magnetic monopoles of the quark d and antiquark d̄, respectively.
Inside of the π±-meson the magnetic monopoles gd and gd̄ rotate emitting their own

22



qinertons and exchanging with similar excitations of the quarks u and ū, respectively.
In such presentation the π−-meson is the antiparticle to the π+-meson and hence
their masses are the same. Formulas (50) give automatically known transformations
of quarks to leptons (i.e. a bubble collapses to a local deformation, from Fig. 3b to
Fig. 3a):

π+ → (u) + (gd) →
{
e+ + νe
µ+ + νµ

, π− → (ū) + (gd̄) →
{
e− + ν̄e
µ− + ν̄µ

, (51)

i.e., two pairs of the quark and antiquark: u and gd, and ū and gd̄, disintegrate and
the quarks and the antiquarks collapse, i.e. they mutate to leptons (51).

In the Standard Model isospin arguments indicate that the π0 state is (uū −
dd̄)/

√
2. However, what does this mixed state of uū and dd̄ really mean with the

addition of the factor of 1/
√
2? This state shows a mix of wave ψ-functions of

the corresponding quarks. What do those wave ψ-functions mean in the formula
(uū − dd̄)/

√
2? What is the kinetics of quarks inside the meson? That is, how

do the quarks and antiquarks move inside of the π0-meson that is characterized by
such formula? It is not possible to imagine. The formula (uū− dd̄)/

√
2 is rather an

abstract writing to satisfy some abstract formalism.
However, as has been shown above, the wave ψ-function in the Schrödinger

equation (35) is the real thing associated with the central particle and its cloud of
excitations. In the case of the present approach the quarks inside of the π0-meson
are moving by known trajectories (see below the section 4.3). That is why the simple
structure of π0-meson presented in expression (50) is plausible. Indeed, the pion is
neutral and can annihilate by the scheme

π0 → (d) + (u) →
{
γ + γ
e− + e+ + γ

. (52)

Although experimental studies [85] of the decay of π0 were carried out in detail,
they did not disclose an inner structure of this subatomic particle; the major issues
that allowed the examination were the conditions at which the pion appeared and
the accurate measurement of its lifetime.

The structure of quarks in the Standard Model is described by unitary symmetry
SU(3). Account of the Fermi-Dirac statistics for quarks leads to a splitting of each
flavor in three colors, which brings the strong interaction to QCD that operates with
color charges exchanging color gluons.

The earlier SU(6) theory [86, 87] successfully explained many experimental facts,
but later was rejected because it was thought that from the fundamental point of
view, SU(6) was contradictory. SU(6) theory assumes that quarks obey the Fermi-
Dirac statistics, but in reality it looks as if they obey the Bose-Einstein statistics.

This paradox was explained by Nambu [88] on the example of the Ω− baryon.
Its spin is 3/2, and the strangeness −3, so it occupies a state in which the spins of
all three S-quarks are parallel. However this state is symmetric under permutation
of any pair of particles, in contradiction with the requirement of the Fermi-Dirac
statistics. But if for this situation one applies the Bose-Einstein statistics, then for
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the Ω− particle (as well as for other baryons) the values derived by using the SU(6)
become consistent with experimental data. So, it turns out that in baryons quarks
behave as bosons, but the quarks are separated. Thus, it was recognized that the
theory of SU(6) connects the properties that are mutually exclusive and therefore
it is too unrealistic.

However, in terms of the proposed deterministic submicroscopic theory this im-
perfection of the SU(6) theory becomes its advantage. In fact, in our model quarks
obey the Fermi-Dirac statistics. However, in hadrons quarks are ultrarelativistic
and hence their clouds of excitations are small and do not overlap.

The absence of overlapping clouds immediately prevents the Pauli exclusion prin-
ciple. The cloud irradiated by one quark is absorbed by another quark. The situation
is similar to the behavior of dilute gases of atoms under laser cooling, when a moving
atom irradiates the atom’s cloud of inertons and its neighbor completely absorbs the
cloud [24].

In nuclear physics the proton and neutron are different only in their isospin
projection. However, this notion does not seem fundamental but simply is useful
in the appropriate algebra. Indeed, what is the isospin? It is a phenomenological
notion, which rather has no physical sense. It appears in some mathematical abstract
considerations, that is all. For instance, for an individual homo sapiens we may also
introduce a notion of a “pseudospin”, why not? In fact: one projection of homo
sapiens is the male, the other projection is female. Is there any benefit of such a
determination?

We may suggest the structure of a nucleon as depicted in Fig. 10. Namely,
instead of the generally accepted view that the structure of the proton and the
neutron respectively are p = duu and n = ddu, we may suppose a couple of other
versions for the formulas of nucleons. It seems the more plausible are p = duu and
n = dugu, or in the explicit form

p+=(du, u) = (π0, u), n0= (d u, gu) = (π0, gu) (53)

where the structure of π0 is defined above (50).
Fig. 10 illustrates how the nature avoids the problem of three bodies, which does

not have a steady-state solution: Initially two quarks form a stable vortex system;
then this system jointly with one more quark/monopole forms another vortex stable
system.

As is known, W± bosons are mediators of neutrino emission and absorption.
Their charge manifests itself through emission or absorption of electron/positron.
The emission of a W+ or W− boson by a baryon either raises or lowers its electric
charge by one unit, and also changes the spin by one unit. These bosons cause
nuclear transmutation. The Z0 boson is detected as a force-mediator whenever
neutrinos scatter elastically from matter and their appearance is not accompanied
by the production or absorption of new charged particles. Three bosonsW±, Z0 and
the photon represent the four gauge bosons of the electroweak interaction. Let us
look how the bosons of the weak interaction appear in the submicroscopic approach.

A decay of a hadron takes place mostly under an impact of perturbative con-
ditions. In other words, spontaneous pairs of quark-antiquark must stimulate the
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Figure 10: Nucleon. The pion, i.e. π0-meson, which can be treated as an inner vortex,
is rotated together with quark d (the case of the proton) or with the magnetic monopole
gu (the case of the neutron). The pion and the quark d produce their own vortex in the
proton. The pion and the magnetic monopole gu produce the vortex in the neutron.

decay. For instance, in the framework of the submicroscopic approach the decay of
the neutron (presented below as a combination of quarks d and u, and the magnetic
monopole gu) occurs at the collision with a quark-antiquark pair uū by the following
formula:

(d u + gu) + {uū} → (du + gu + u + ū) → (d u + u+ gu)

→ (d u + u) + (ū gu) . (54)

That is, we have obtained
n0 → p+ +W−, (55)

or in other words, we just revealed the inner structure of the combined particle W−:
W− = (ū gu). This boson is composed of the antiquark ū and the u-quark’s magnetic
monopole gu, which rotate around each another (note an idea about a compositeness
of W± and Z0 bosons has already been expressed [89] in the framework of the Next-
to-minimal supersymmetric standard model). Under the compressing pressure (44)
this combined particle collapses in a short time of around 3×10−25 s, such that each
of the components changes its quark state (Fig. 3b) to the appropriate lepton state
(Fig. 3a). Namely,

W− ≡ (ū gu) →
(
e−, ν̄e

)
→ e− + ν̄e. (56)

Then the antiparticle to the boson (56) is

W+ ≡ (u gū) →
(
e+, νe

)
→ e+ + νe. (57)

The third boson of the weak force seems to have the structure

Z0 = (uū) →
{
γ + γ
µ+ + µ− . (58)

The moving electron is shown in Fig. 6 (right). The antineutrino can be seen
in Fig. 6 (left) at the point λ/2. The antineutrino travels without changes in
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its monopole state along the whole path. Because at the creation of a pair of
particle-antiparticle, the particle and the antiparticle emerge only in the electric
state; the magnetic monopole state is an interjacent state (Fig. 6) and without the
accompanying inerton-photon cloud this state cannot be changed (about the motion
of a charged particle see Ref. 26 for details).

Fig. 11 depicts a typical structure of a hadron that consists of a quark q and
antiquark q̄; such a pattern is typical for π0-mesons, Z0-bosons and similar hadrons.

a b

q

q

g
q

g
q

Figure 11: Hadron formed by the quark q (with the charge − e) and the antiquark q̄
(with the charge + e). a – the quark q and the antiquark q̄ are found in the initial state;
b – each of the quark q and the antiquark q̄ has passed the section λ/2 of their paths and
their state is transformed: q → gq (i.e. from the quark state to the monopole state) and
q̄ → gq̄ (i.e. from the antiquark state to the antimonopole state). Then passing the next
section λ/2 these entities interacting through spatial inflated excitations, i.e. qinertons,
change the configuration to the initial state (Figure a): the quark q and the antiquark q̄,
respectively. And so on.

Fig. 12 pictures a typical structure of a hadron that consists of a quark q and
the magnetic monopole gq̄; such a pattern is typical for π±-mesons, W±-bosons and
similar hadrons.

At a fast non-adiabatic process (annihilation, explosion, decay) the magnetic
monopole can be released from the combined hadron in question breaking the sound
barrier in the tessellattice, which is the velocity of light c. Coming through the
barrier the quark state collapses to the lepton state (the transition from Fig. 3b to
Fig. 3a) and the quark’s magnetic monopole becomes the corresponding lepton’s
magnetic monopole. This lepton’s monopole is known as a neutrino that travels
with the velocity close to c. In its motion the neutrino interacts with cells of the
tessellattice and generates a cloud of inertons. The motion should obey relationships
(27). With a neutrino energy around 1 GeV (i.e. mc2 = 1 GeV = 1.6 × 10−10 J)
we may estimate its velocity υneutrino equal to about c (maybe 0.99c). We deduce
from relationships (27) the neutrino’s de Broglie wavelength λ ∼ 10−16 m and the
frequency ν ∼ 1024 Hz of the neutrino oscillations along its path. In transversal
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Figure 12: Hadron formed by the magnetic monopole gq of the quark q (with the charge
− e) and the antiquark q̄ (with the charge + e). a – the magnetic monopole gq and
the antiquark q̄ are found in the initial state; b – each of the entities, the monopole
gq and the antiquark q̄, has passed the section λ/2 of their paths and their state is
transformed: gq → q (i.e. from the monopole state to the quark state) and q̄ → gq̄ (i.e.
from the antiquark state to the antimonopole state). Then passing the next section λ/2
these entities interact through spatial inflated excitations, i.e. qinertons, and change their
configuration to the initial state (Figure a): the magnetic monopole gq and the antiquark
q̄, respectively. And so on.

directions the neutrino’s inertons reach a distance Λ = λ c/υneutrino ≈ λ ∼ 10−16

m. The larger the neutrino’s energy, the shorter is λ and the smaller Λ, though the
frequency ν grows. In each odd section λ/2 of the neutrino’s path it emits inertons
and gradually loses its velocity and mass; during each even section λ/2 the neutrino
re-absorbs its inertons and restores its mass, and inertons colliding with the neutrino
reset its initial velocity, and so on.

If the neutrino starts to move with the speed υneutrino > c, then at impacts with
oncoming cells of the tessellattice the neutrino will excite them, so that after passing
a cell, the cell will quickly relax, generating an inerton and/or photon in transversal
directions. And such motion signifies a kind of a real friction (the bremsstrahlung).
Tracks of γ-quanta after passing of a neutrino have never been observed; this means
that the speed of neutrinos is less than c (see also Ref. 90).

4.3. On the structure of a nucleon

Nuclei are bound together by the residual strong force (the nuclear force), as QCD
claims. On the other hand, because of the well-known difficulty of QCD in the
non-perturbative domain, many effective models reflecting the characteristics of the
strong interaction are used to study the behavior of nucleons. QCD remains indis-
pensable in the study of nuclear phenomena of the quark structure of the nucleon. To
such models belongs the MIT bag model, the Friedberg-Lee soliton bag model [91],
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the quark-meson coupling model [92, 93], the π−ρ−ω-meson coupling Skyrme soli-
ton model [94] including an effective nucleon-nucleon force of the Skyrme type [92],
the chiral SU(3) quark model [96, 97], the quark mass density-dependent model and
the quark mass density- and temperature- dependent model [98], the chiral soliton
model where baryons are described as non-topological solitons [99], and others.

The meson theory of nucleon coupling, i.e. a pion exchange between nucleons,
does not look as a logical mechanism that binds the nucleons: the energy of pions is
around 140 MeV, which is only 6.7 times less than the energy of the nucleon. How
often are these pions emitted by one nucleon and absorbed by another? What is
the duty cycle? What is the mechanism of the emission? Comay [100] showed that
the Yukawa theory proposed in the past to describe the nuclear forces is undergoing
significant theoretical difficulties and inconsistency; an analogous argument proves
that a Yukawa particle cannot be associated with the real π0-meson.

High precision measurements [101] of the deuteron electromagnetic structure
functions (A, B and T 20) extracted from high-energy elastic ed scattering, and
the cross sections and asymmetries extracted from high-energy photodisintegration
γ + d → d + n allowed the authors to conclude that the experiments do not pre-
fer any of the approaches: the residual quark-gluon interaction and the meson ex-
change. Moreover, both approaches seem to disagree. The authors tested theoretical
considerations that included non-relativistic and relativistic models using the tra-
ditional meson and baryon degrees of freedom, effective field theories, and models
based on the underlying quark and gluon degrees of freedom of QCD, including
non-perturbative quark cluster models and perturbative QCD.

Among new approaches to the problem of the origin of nuclear forces we can
mention Santilli’s [102] approach based on the introduction of hadronic mechanics,
which operates with a nonunitary transform of orthodox quantum mechanics, i.e. in
the approach, which is algebraic, due to the strong interaction, one cannot separate
the kinetic and potential energy in the nuclear system studied.

The author [27] carried out a preliminary study of the problem of nuclear forces
in the framework of the submicroscopic approach a few years ago. Taking into
account the study [27] we may now consider a nucleus in more detail.

Let us initially unify quarks d and u to the π0-meson state (50), as is shown
in Fig. 10. For this we shall solve the problem of two bounded charged particles
(see, e.g. Ref. 103), which in our case of two quarks in addition they are bounded
through the potential of the strong force. For the Coulomb interaction of the quarks
d and u the potential is

VCoulomb = − e2

4πε0 |rd − ru|
(59)

where rd and ru are coordinates of the quarks. For the strong interaction of the
quarks d and u (in the interior of the bubble, Fig. 9), which occurs through qinertons,
the potential is

Vstrong = − hc

|rd − ru|
. (60)

Since the ratio Vstrong/VCoulomb
∼= 137.1597 × 2π, we may neglect the poten-

tial (59). The potential (60) is completely non-perturbed and deals with energies
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less than 10 MeV, therefore, such presentation (60) does not contradict with data
analyzed by Bethke [33]. Then the Lagrangian that describes two bounded quarks
reads

L = 1
2
md ṙ

2
d + 1

2
mu ṙ

2
u − hc

|rd − ru|
. (61)

We can pass on to the coordinate of the center of gravity rc.g. = (mdrd+muru)/(md+
mu) and the relative coordinate r = rd − ru, which then changes the Lagrangian
(61)

L = 1
2
(md +mu) ṙ

2
c.g. +

1
2
µ ṙ2 − h c

r
(62)

where the reduced mass is

µ = mdmu/(md +mu). (63)

Let the centre of gravity be motionless; then the first term in Lagrangian (62)
becomes zero.

Now we can solve the Schrödinger equation (36) having preserved the two last
terms in the Lagrangian (62) in which we can insert the relativistic masses of the
quarks. The result is the problem of the hydrogen atom whose solution is known.
In particular, we can write the radius of the orbit for the reduced mass µ. In the
conventional case of the hydrogen atom, this is the Bohr radius

rBohr =
ℏ2

melectron
e2

4π ε0

. (64)

For the case of the strong potential (60) the solution for the radius of the reduced
mass µ is

r0 =
ℏ

2πµ c
. (65)

Let us first consider a free π0-meson. Its energy is 135 MeV. We may put for the
u and d quarks the rest energy 3 and 5 MeV, respectively; then their total energies
in the π0-meson respectively are 50.625 MeV and 84.375 MeV. From expression (63)
we get for the reduced meson mass µπ0 = 5.6325× 10−29 kg. Substituting this value
into the expression (65), we obtain r0, π0 = 0.99× 10−15 m.

Now we can consider a nucleon. In the proton an energetic π0-meson and a quark
u rotate around one another; in the neutron π0-meson and the u-quark’s monopole
gu are rotating around each other. We shall emphasize that since two particles are
found in the same orbit, the section between them along the orbital path is equal
to the de Broglie wavelength for each of the particles.

How is the energy Enucleon = 939 MeV distributed among the π0-meson and its
rotating partner? Let 3/4 ·Enucleon accounts for the π0-meson (because it consists of
two particles and as the whole the meson is also a particle) and 1/4 ·Enucleon for its
partner (the quark u for the proton or the monopole gu for the neutron). In such
case the mass of the reduced particle in the nucleon is µnucl = mπ0 mu/(mπ0 +mu)∼=
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mπ0 mgu/(mπ0 +mgu)
∼= 3.71× 10−28 kg. After that we can calculate the radius of

the orbit of this reduced particle by using expression (65):

r0, nucl = 0.2× 10−15m. (66)

The cloud of qinertons for the reduced mass µnucl has amplitude

Λ ≈ λdeBrog c/υ + r0, nucl|υ∼=c = πr0,nucl + r0,nucl ≈ 0.83× 10−15 m, (67)

which does not exceed the radius of the unified bubble created around the nucleon’s
three quarks, i.e. the amplitude of the cloud of qinertons is less than the Compton
wavelength of the nucleon: Λ < λ Com, nucl = 1.32 × 10−15 m. Therefore, qinertons
generated of the quarks in motion are located strictly inside of the nucleon, namely,
in the range limited by the radius Λ ≈ 0.83× 10−15 m.

Now we can turn to recent experimental data [104]: The physical picture is that
the proton is comprised of three regions: an outer cloud of qq̄ condensed ground
state of size rq q̄ ≥ 0.86 × 10−15 m, an intermediate shell of baryonic charge of size
rB = 0.44 × 10−15 m, and a core of size rc = 0.2 × 10−15 m, where valence quarks
are confined.

The same authors [105, 106] further note that these experimental results allow a
description in terms of the topological soliton model of the nucleon. For this purpose
they introduce an abstract scalar field ς of an undetermined nature. Manipulating
with the ς they arrive at the topological soliton model in which the large mass
problem is resolved by tearing the scalar field ς at the critical size rc = 0.2× 10−15

m, i.e. the pion decay coupling constant fπ (= 93 MeV) [106], drops down sharply to
zero at r < rc, which decreases the mass of the soliton by a significant amount; this
allows them to associate the model with a chiral bag model. The region rc < r < rB
was called the shell of topological baryonic charge density. At r > rB, the scalar
field ς decreases smoothly, which makes here the quarks and antiquarks massive and
lowers the energy of the Dirac sea. Hence, the region rB < r < rqq̄ should represent
a qq̄ condensed ground state that forms an outer cloud of the proton.

Such a topological soliton model of the proton was called a ‘Condensate Enclosed
Chiral Bag’ [106]. In the end the authors assert: “The consequent discovery of the
structure of the proton at LHC at the beginning of the 21st century will be analogous
to the discovery of the structure of the atom from high energy α-particle scattering
by gold atoms at the beginning of the 20th century.” A similar Skyrme model in
which chiral rotation of the scalar and pseudo-scalar fields lead to the linear sigma
model favoring the identification of the scalar field to the scalar sigma was developed
in work [107].

Nevertheless, from the physical point of view, a non-topological soliton model
[90] looks more preferable. Indeed, a bag model exhibits physical characteristics very
similar to those of a “gas bubble” immersed in a “medium”: the model operates
with a constant surface tension and a constant pressure exerted by the medium on
the gas in the bubble; besides, the model includes the thermodynamic energy of the
gas and the related gas pressure.
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The submicroscopic description of the behavior of quarks presented above agrees
rather with the physical pattern of a “gas bubble” constructed in Ref. 91. Let us
now compare our theoretical results with the experimental data [106]:

1) a core of size rc = 0.2 × 10−15 m, where valence quarks are confined
– this exactly corresponds to the radius (66) of the orbit of the reduced
particle of the nucleon;

2) an outer cloud of qq̄ condensed ground state of size rqq̄ ≥ 0.86 ×
10−15 m – this conforms to the amplitude (67) of the cloud of inflated
excitations generated by the reduced particle in the nucleon;

3) an intermediate shell of baryonic charge of size rB = 0.44× 10−15 m
– this is the inflection point of the static quark potential (6), which in
the explicit form combining expressions (43) and (60) can be read

V (r) = −σr − hc/r. (68)

In this potential the two terms are negative and they describe attraction.
The first term is negative, because it is stipulated by the mechanism of
the attraction of bubbles, expressions (42) and (43). The second term is
dictated by a spherical standing wave generated by each of the quarks
in the system under consideration: the quark periodically decomposes,
i.e. it throws off its inflated state by portions and the standing spherical
wave spreads these qinertons along a relief given by the deformation coat
of the quark (Fig. 3b); it is this peculiar relief that directs two quarks –
through their qinertons – to each other. The extremum of the Eq. (68)
is reached at the solution of the equation dV/dr = 0, i.e. σ−hc/r2 = 0.
This equation gives the solution for the inflection point

rinf ∼=
√
hc/σ (69)

that can be identified with the shell of baryonic charge rB = 0.44×10−15

m of Ref. 104. In the point r = rinf the potential (68) is maximal, as
V ′′ (rinf) < 0, which means that at r = rinf the attraction is minimal.

Thus Nature does not solve the problem of three bodies; Nature reduces the
problem to a system of two bodies, which allows an analytical solution, as has been
discussed above.

Expression (69) allows us to estimate the value of the surface tension of the
quark’s bubble. Indeed, for the constant σ we get σ = hc/r2inf

∼= 1.027× 106 Jm−1.
With account for expressions (42) and (43), we obtain an estimate of the tension of
the quark’s bubble:

γ = σ/(4πχ) ∼ 1020 Nm−1 (70)

where we set the depth of overlapping χ ∼ 10−16 to 10−15 m (see Fig. 8). For
example, for some liquid substances typical values of the surface tension at a room
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temperature are: 0.465 Nm−1(mercury), 0.073 Nm−1 (water) and 0.03 Nm−1 (soap
water).

According to the theory described above a nucleon is a typical bubble and its
surface film (interface, or membrane) is specified by the thickness from r = Λ ≈
0.83×10−15 m to r = λCom, nucl = 1.32×10−15 m. Such a bubble with the membrane
is shown in Fig. 13.

Figure 13: Structure of a nucleon. The quarks are rotated in the interior of the nucleon,
which is shown as the grey sphere having the radius r = Λ ≈ (0.83−0.86)×10−15 m. The
membrane of the bubble spreads from r = Λ to r = λ Com,nucl = h/(mp(n) c) = 1.32×10−15

m. In the membrane cells of the tessellattice are found in a stretched state and the cohesive
forces between these cells are responsible for the surface tension.

It is interesting that proton charge radii obtained from electronic measurements
and the hydrogen spectroscopy settle around 0.88 fm, whereas the proton radius
obtained from muonic hydrogen experiments is at 0.84± 0.01 fm [108-110] and the
researchers noted the real size is rather 0.84 ± 0.01 fm, which is exactly the case
(67) derived from the inner consideration of the constitution of a nucleon described
in the present work.

Beta decay of the neutron, which outside a nucleus has a lifetime of about 15
minutes, is denoted by the radioactive decay

n0 → p+ + e− + ν̄e.

Where do the electron and the electron antineutrino come from? Nobody knows.
Nevertheless, expressions (54)–(56) clarify the process of transformation in the real
space constituted as the tessellattice. Figure 14 depicts vividly successive changes in
the process of neutron transformation: (a) the initial stable state of the neutron; (b)
the separate orbital monopole gu, which is the axial state of the quark u+, scatters
by the oncoming virtual quark-antiquark pair (u+, ū−). Such pairs can be created
from the tessellattice only in the electrically charged state and never in the monopole
state; (c) the quark u+ substitutes for the monopole gu occupying the orbit of the
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latter and at the same time the antiquark ū− and the monopole gu leave the nucleon
as an unstable pair of ū− and gu known as a virtual particle W−. The separating
particles ū− and gu cannot exist in the tessellattice in the inflated state. That is
why the tessellattice immediately squeezes ū− and gu to the state of local stable
deformations and they become the electron e− and antineutrino ν̄e, respectfully. In
this phase transition from one topology to the other, only the particles’ volumes
change (from Fig. 3b to Fig. 3a); their surface polarizations are preserved.
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Figure 14: Beta decay of the neutron to the stable state of the proton.

The present study unveils the inner nature of the nuclear forces: the attraction
between motionless nucleons is caused by their adhesion. Two membranes stick
together generating a stable formation shown in Fig. 15. Note in nuclear physics
the radius of nuclear forces reaches (1.2− 1.5)× 10−15 m [111], which is compatible
with our result λCom, nucl = 1.32 × 10−15 m. At a distance around 0.4 fm the
nuclear forces of attraction are changed to forces of repulsion [112], which is also
consistent with our result, as this is the inflection point (69) of the quark potential
(68). In motion a nucleon generates its own inerton cloud that accompanies the
nucleon, as Fig. 4 exhibits. Since in nuclei the speed of a nucleon is less than the
velocity of light and the energy per nucleon is about 8 MeV, we may estimate the
average nucleon’s de Broglie wavelength as about λ ≈ 5×10−15 m and the nucleon’s
inerton cloud, which spreads around the nucleon (see Fig. 4), reaches the distance
of around Λ = λ c/υ ∼ 10−14 m. An inerton theory of the interaction of nucleons
was developed in Ref. 27. Of course perturbations should generate virtual pairs
of lepton-antilepton and/or quark-antiquarks in the vicinity of the quantum system
studied. These pairs have to disturb the Lagrangian of nucleon–nucleon interaction
presented in Ref. 27.

The problem of the proton spin crisis has been discussed in the literature for
years (see, e.g. recent experimental works [113-115]). The quarks inside a proton
have their own intrinsic spin. But numerous experiments have confirmed that a
directional preference among all these quark spins can account for only about 25%
of the proton’s total spin. Therefore, gluons contribute much less than originally
speculated to proton spin, so the source of the spin still remains a mystery.

Comay [116] notes that the problem would be solved if one correctly calculates
angular momentums of all the quarks and takes into account the quark spatial
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Figure 15: Attraction of two nucleons is cause by the adhesion of their membrane films.

motion (which also is in agreement with experiment [113]). Nevertheless, to resolve
the problem of the proton spin, one first has to have a correct determination of the
notion of spin as such. The determination was done in works [23, 22]: spin-1/2 is
an integral property of a moving particle, which is associated with a kind of inner
pulsations/oscillations. These oscillations may have two opposite directions, which
set two opposite projections. The projections of oscillations may be related to the
direction of the particle’s electro-magnetic polarization, left or right. The electro-
magnetic polarization is given by the needles on the surface of the particle, which
is described by the Maxwell equations [22]. Hence any charged particle moves like
an oscillating vortex with the left or right surface polarization (i.e. left of right
polarized electro-magnetic filed). The inerton cloud of a charged particle being
electro-magnetically polarized carries the phenomenon of the particle’s spin (the
left or right oscillating electromagnetic vortex) through the space.

In the case of the proton, probing the structure of the proton for its spin, one
has to use low energy collisions and prolong the duration of the reaction until the
proton passes its whole de Broglie wavelength λ ≈ 5× 10−15 m.

At a higher energy (a few to hundreds of GeV) the length of its de Broglie
wavelength λ falls within its size, i.e. λ becomes less than λCom, p. In this case the
experiment will probe the motion of the proton’s entities – quarks – and the data
will be specified by dispersion (a similar situation takes place in femtosecond optics:
a probing laser pulse fixes a “frozen” instantaneous state of complete vibrations of
atoms).

5. Discussion and conclusion

We have reviewed the mainstream concepts aimed at the description of elementary
particles in the high-energy domain. The majority of existing approaches are devel-
oping in the realm of abstract phase spaces, which introduces significant difficulties
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in physical interpretation of their notions. For example, color charges of quarks,
which supposedly have to compensate each other at the interaction, cannot be mea-
sured in principle. Even in the framework of QCD the concept of the integer quark
charge is working very well [52, 54], so no sense to introduce any fractional charges
that are not observed experimentally. Many discrepancies of QCD were considered
by Comay [116-118]; in particular, he [117] emphasizes that QCD has no theoretical
explanation for the interaction of a hard photon with hadrons; an old idea of vec-
tor meson dominance suggested to explain the interaction properties of high-energy
photons with hadrons is strongly criticized.

All events of high-energy physics occur in the background of an ordinary physical
space, though the major modern quantum concepts refer to this background as to a
vague vacuum with unknown and undetermined properties. An ambiguous physical
vacuum really introduces a concept of god and devil in modern science. In fact,
the vacuum brings particles to existence from its dark body and takes the particles
back. As a result we already got dark matter and dark energy. Of course such
pseudo physical doctrine of the physical vacuum requires a redefining.

The physical vacuum was reconsidered in our works [16-19] in terms of a physical
space. The structure of physical space was derived from first mathematical principles
by using topology, set theory and fractal geometry. The examination immediately
sheds light on the scene of all the events of elementary particles. The theory explains
what is a real particle (lepton and quark), what are its size and shape, what is its
mass, what are its properties, how it interacts with the space that just created it,
and how the particle moves satisfying all the peculiarities of quantum mechanics
[20-28]. Those studies allow us to apply the developed submicroscopic concept to
the physics of quarks, which has been done in the present work.

It has been argued that the quark represents an inflated cell in the tessellattice
and around this kernel-cell a coat is developed to compensate the inflation. Beyond
the deformation coat the space remains unperturbed. The interaction of quarks
occurs through an agglutination of their coats, which are typical bubbles filled with
inflated excitations produced by standing spherical waves generated by the quarks.
A short-range interaction of bubbles easily resolves the paradox of confinement and
asymptotically freedom of quarks. We have analyzed the stability of such physical
picture, in particular, for the proton. The conclusion has been drawn that unper-
turbed nucleons interact through two major channels: i) a direct coalescence of the
nucleons? deformation coats and ii) the spatial excitations generated by the nucle-
ons at the motion through space [27]. These excitations are inertons, which were
introduced in previous papers by the author [20-28]. The concept of inertons was
proven in a number of different experiments (see, i.e. Refs. 28, 119).

From the viewpoint of the structure of the tessellattice, there are no reasons to
introduce fractional charges for quarks. The structure of quarks and hadrons pre-
sented in section 4 introduces the integer charge for quarks ±e. The present theory
focuses on a dynamic pattern: how quarks move, what are their trajectories inside of
a hadron, at which configurations the quarks enter the hadron under consideration
(i.e. the electric state or the magnetic monopole state), etc. The quark’s cloud of
inflated excitations named qinertons allows a direct connection to a gluon of QCD.
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In the approach developed the quark is colorless. No sense to introduce an addi-
tional kind of the interaction caused by some “colors”, because quarks with their
qinerton clouds represent real bubbles in the tessellattice and these bubbles interact
with a potential proportional to r, as described above in the present work, which
binds quarks.

The isospin phenomenology can be substituted by deterministic submicroscopic
dynamics of bubbles with the quarks in the bubble’s center. Such dynamics, a kind
of a hydrodynamics with elements of submicroscopic mechanics is not developed yet.
A new mathematics will be needed for the description and understanding of these
systems: tightly interacting bubbles in which kernel particles (quarks, or partons)
with qinertons (whose cloud is a gluon?) are dancing under their own mechanics.
Such studies will be able to shed light on the criterions of stability/non-stability of
hadrons.

The theory can further be tested in scattering experiments, as it allows the
calculation of form factors and the differential cross-section for elastic scatterings of
the hadrons studied.

In our recent studies we revealed that inerton fields produced at rather simple
laboratory conditions are able to influence not only chemical, physical and biological
processes, but also nuclear reactions. An apparatus that generates inerton fields is
illustrated in Fig. 16. Below we state two examples of using the inerton field.

Figure 16: Laboratory apparatus of the Lx series produced by the company Indra Scien-
tific SA, which generates inerton fields.

Figure 17 shows spectra of a sample of radioactively contaminated water, 300
ml, whose initial radioactivity was about 10−5 Bq/l. After 30-second processing of
the water sample with the inerton field having the intensity of a few thousand pulses
per second, the level of radioactivity was quenched by 32%. Further treatment did
not reduce the level of radioactivity of water – we reached a saturation threshold.
It seems a further quenching could be possible at a heightening of the intensity of
applied inerton field.

Cylindrical samples with the length 15 mm and the diameter 1 mm made of
technical iron were affected by inerton fields in the apparatus Lx (Fig. 15) for
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Figure 17: γ-spectra of a sample of radioactive water before processing of inerton field
(left) and after processing (right). The numbers of pulses of γ-quanta recorded by the
scintillator are shown in the upper right corners of the graphs.

30 seconds. The structure of the control sample, which was studied with the use
of a JEOL electron microscope, is shown in Table 1 and Fig. 18. The elemental
composition of the sample affected by inerton fields is shown in Table 2,a, b, and c
and Fig. 18, 19, 20, respectively (the elemental composition was analyzed in three
different points a, b and c of the sample).

Table 1 (See Fig. 18.)
Element Composition, % Atomic, %
C K 11.72 8.16
Mn K 0.39 0.28
Fe K 87.89 61.56

Total 100.00 %
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Table 2a (See Fig. 19.)
Element Weight, % Atomic, % Composition, % Formula
C K 2.09 5.61 7.64 CO2

Ca K 0.34 0.27 0.48 CaO
Cr K 0.35 0.22 0.51 Cr2O3

Mn K 0.38 0.23 0.50 MnO
Fe K 68.63 39.70 88.30 FeO
Co K 0.56 0.30 0.71 CoO
Ni K 1.47 0.81 1.87 NiO
O 26.18 52.86

Total 100.00 %

Table 2b (See Fig. 20.)
Element Weight, % Atomic, % Composition, % Formula
C K 3.57 9.04 13.09 CO2

Ca K 0.58 0.44 0.81 CaO
Cr K 0.40 0.24 0.59 Cr2O3

Fe K 63.04 34.31 81.10 FeO
Ni K 1.93 1.00 2.46 NiO
Cs L 0.36 0.08 0.38 Cs2O
Hf L 1.33 0.23 1.57 HfO2

O 28.78 54.67
Total 100.00 %

Table 2c (See Fig. 21.)
Element Weight, % Atomic, % Composition, % Formula
C K 3.88 9.61 14.21 CO2

Ca K 0.48 0.36 0.67 CaO
Cr K 0.34 0.20 0.50 Cr2O3

Mn K 0.20 0.11 0.26 MnO
Fe K 63.16 33.64 81.25 FeO
Ni K 2.44 1.24 3.10 NiO
Cs L 0.00 0.00 0.00 Cs2O
O 29.50 54.85

Total 100.00 %
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Figure 18: Elemental composition of the iron sample (control).

Figure 19: Elemental composition in the point a of the affected sample.
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Figure 20: Elemental composition in the point b of the affected sample.

Figure 21: Elemental composition in the point c of the affected sample.

Literature on low energy nuclear reactions is abundant [120,121], though there
is no theoretical understanding of the phenomena. There are no solid theoretical
ideas regarding methods of control of nuclear reactions. The study presented in this
paper opens a gateway to a real realization of controlled fission and fusion reactions
in which an inerton field is able to play the role of a moderator between microscopic
and subatomic processes.
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66. J. Jäykkä, M. Speight and P. Sutcliffe, Broken baby Skyrmions, Proc. R. Soc.
A 468, no. 2140, 1085-1104 (2012).

67. P. Hasenfratz and J. Kuti, The quark bag model, Phys. Reports 40, no. 2,
75-179 (1978).

68. C. DeTar and J. Donoghue, Bag models of hadrons, Annual Review of Nuclear
and Particle Science, 33, 235–264 (1983).

69. Y. Iwamura and Y. Nogami, Deformed baryons: Constituent quark model vs.
bag model, Il Nuovo Cimento A 89, no. 3, 315-323 (1985).

70. R. Bhaduri, Models of the nucleon. From quarks to soliton (Redwood City:
Addison-Wesley Publishing Company, 1988).

71. A. Abbas, The MIT bag model and the spin structure of the nucleon, J. Phys.
G: Nucl. Part. Phys. 15, No. 7, L129-L133 (1989).

72. A. Hosaka and H. Toki, Quarks, baryons and chiral symmetry (World Scien-
tific, 2001).
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