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Abstract

The paper reviews major approaches to the description of subatomic particles, such
as leptons, quarks, hadrons and nucleons. Among these approaches are quantum chromo-
dynamics, soliton models, bag models and others. The main accent is on a theory of the
real physical space that acts as a scene on which all high-energy events take place. We
discuss how a lepton and quark appear in the space constituted as a tessellation lattice of
primary topological balls – the only structure that mathematics (i.e. set theory, topology
and fractal geometry) offers to the constitution of ordinary physical space. Since leptons
and quarks emerge in the tessellattice from a topological ball, they must interact with
this substrate. The principles of the interaction of subatomic particles with space and
through space between themselves are considered in detail. The approach: i) states that
real quarks possess the integer charge ±e and they periodically change to the monopole
state (hence, canonical particles are dynamic dyons); ii) naturally solves the problem of
confinement of quarks; iii) reveals the dynamics of quarks in hadrons; iv) discloses an inner
structure of the proton and neutron; v) calculates the radius of the proton; and vi) derives
the nuclear forces as the result of both direct coalescence of surfaces of the nucleons and
the overlapping of spatial excitations (named inertons) generated by the nucleons at their
motion through the tessellattice. Experimental results showing nuclear transformations
in samples affected by artificially generated inerton fields are demonstrated.
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1. Introduction

In fundamental physics the Standard Model is treated as a basic model for the description of
elementary particles (see, e.g. Refs. 1). Three kinds of elementary particles are leptons, namely:
electron, muon and τ -lepton; besides, each lepton has its own neutrino. Quarks with three colors
(red, yellow, blue) and six flavors are u, d, c, s, t, b. Each lepton and quark has the appropriate
antiparticle. Leptons and quarks are fundamental fermions. The electric charges of leptons are ±e,
though by definition quarks are characterized by the friction electric charges ±e/3 and ± e2/3.
The spin of leptons and quarks is the same, 1/2. Quarks and leptons are treated as point particles
[2].

Leptons are able to interact through quanta of electroweak interactions, which are the photon γ
and W± and Z0 bosons. Quarks interact through quanta of strong interactions, which are gluons,
and can also interact through W± and Z0 bosons. All these quanta are called fundamental bosons.
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The Standard Model includes a primary particle called the Higgs boson, which is needed for an
abstract formalism to launch a family of massive particles.

A theory of hadrons was developing from earliest partons to modern confinement. The parton
model was proposed by Feynmann [3] to analyze high-energy hadron collisions. Later on it was
found that partons describe the same objects now known as quarks and gluons. Literature on
quarks and the appropriate science known as quantum chromodynamics (QCD) is very rich (see,
e.g. monographs [4,5]). QCD studies different aspects of the interaction of quarks and hadrons.

On the other hand, one can read an interesting remark in Ref. 6: Jets probing the deep
structure of hadrons reveal that at scales down to 10−18 m matter indeed shows a quark-gluon
structure; however, QCD used at the analysis of the results is working with a precision of only at
a level of around 10%.

There also exist other approaches describing the behavior of quarks in hadrons, which try to
bring some physical ideas into the highly abstract formalism of QCD. In the present work we briefly
review approaches based on QCD, the Nambu–Jona-Lasinio model [7, 8], the Skyrme model [9,
10], the MIT bag model [11-14] and the topological soliton model [15], which are most accepted
among physicists.

Nevertheless, in the foreground of particle physics, a significant gap remains in understanding
the causes of the stability of baryons, the quark confinement, the nature of spin-1/2 of baryons and
the origin of nuclear forces. The formalism of QCD was developed based on quantum mechanics
and quantum electrodynamics, which themselves were elaborated in abstract phase spaces, not
the ordinary physical space. The standard model of particle physics combines all fundamental
interactions in a unified theory (the theory of everything). However, doing so the theory of every-
thing rests on complete undetermined basic notions, such as mass, particle, charge, lepton, quark,
Compton wavelength, de Broglie wavelength, wave-particle, matter waves, wave ψ-function, spin,
Pauli principle, etc. So, we have to keep in mind the necessity of the theorem of something, which
will clarify the fundamental notions of quantum physics. Such a clarification can be possible only
within the constitution of the real physical space in which all physical processes occur. However,
the study of physical space and its relationship with the fundamental notions of quantum physics
have so far been beyond the study of particle physics.

Based on previous works of the author, it will be shown below how a theory of the real physical
space [16-19] and the submicroscopic concept [20-27] (which was proven experimentally, see e.g.
Ref. 28) allow us to unveil the mentioned issues in detail.

2. QCD

In 1970s Wilczek discovered a new dynamic principle called antiscreening, or asymptotic freedom.
Wilczek [29] describes this principle as follows. Color charge of a quark builds up its power to drive
the strong interaction by accumulating a growing cloud at larger distances. As the virtual particles
in space respond to the altered situation they rebuild a new cloud, moving along with the quark.
The theories that may display such behavior, i.e. asymptotic freedom, are called nonabelian gauge
theories, or Yang-Mills theories. These theories generalize quantum electrodynamics in such a way
that they postulate the existence of several different kinds of charge, with complete symmetry
among them. So instead of one entity, “charge”, the theories use several “colors”. Besides, the
theory suggests a family of color gluons (instead of one photon, as is the case in electrodynamics).
The color gluons themselves carry color charges. Hence the nonabelian theories differ from elec-
trodynamics in which the photon is electrically neutral. Gluons in nonabelian theories play a more
complicated role in the dynamics of these theories than do photons in electrodynamics and it is
the effect of virtual gluons that is responsible for antiscreening/asymptotic freedom (which is un-
known in quantum electrodynamics). Asymptotical freedom allowed the construction of a theory
of the strong interaction, which describes baryons, based on three quarks, and mesons, based on
quark and antiquark. This becomes possible in QCD, as the color charges of three different quarks
gathered together can cancel. Three colors exhaust all possibilities, which brings us to the gauge
group SU(3), with three colors, and eight gluons.
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Figure 1: Confinement phenomenon: two quarks are stretched forming a “string” in which
their gluon interaction becomes proportional to the distance R between them. The longer
the string, the stronger the attraction between the quarks.

In QCD the problem of coupling of quarks is considered in the framework of the gauge field
theory that describes the strong interactions of colored quarks and gluon fields and the appropriate
Lagrangian is given by

L =
∑
n

ψ̄n, a
(
iγµ∂µ − gγ µ taA

C
µ

)
ψn, a −

∑
n

ψ̄n, amn ψn, a − 1
4G

A
µνG

Aµν (1)

where repeated indices (n, µ, and ν) are summed over. Here, γµ are the Dirac γ-matrices. The
ψn, a are Dirac spinors of the quark field of flavor n and mass mn, with a color-index a = 1, 2, 3
(quarks come in three colors); AC

µ is the four potential of the gluon fields, C = 1, . . . , 8 there are
8 kinds of gluons; the color field tensor is

Gaµν = ∂µA
C
ν − ∂νACµ − gfABC ABµ ACν ; (2)

fABC are structure constants of the SU(3) color group; ta are matrices, which are generators of the
SU(3) group; g =

√
4παs (~ = c = 1) is the color charge, i.e. an effective constant of the strong

force interaction.
A first-order perturbative QCD calculation, which is valid at very large transferred four-

momentum Q, gives for the effective constant [30,31]

αs(Q
2) =

1

b ln(Q2/Λ2
QCD)

+ ..., (3)

where the free parameter in QCD, or the QCD scale parameter ΛQCD, which refers to a particular
definition of the effective coupling, may vary from 0.1 to 0.5 GeV, though researchers tend to
the value of ΛQCD = 217 ± 25 MeV [32] or rather 220 MeV [33]. Bethke [33] emphasizes that if
Q2 becomes larger, αs(Q

2) asymptotically decreases to zero, but the constant αs(Q
2) increases

at smaller Q2; for example, in the case of the Z0 boson whose energy is 90 GeV, the constant
αs(Q

2)|90 GeV = 0.12 and αs(Q
2)|35 GeV = 0.14 [34]. Bethke [33] mentions that αs(Q

2) can exceed
unity for energies in the range 100 MeV to 1 GeV; the energy scale below the order of 1 GeV is
called the non-perturbative region where confinement sets in.

The spatial separation between quarks goes as

–λ = ~/Q. (4)

Expressions (3) and (4) show that at a very short distance and high value of Q coupling between
quarks decreases, vanishing asymptotically. At the limit of very large Q, quarks can be considered
to be “free”, which is called an asymptotic freedom. On the other hand, at large distances, the
inter-quark coupling increases and in this case it becomes impossible to detach individual quarks
from a hadron, which is called a confinement.

The confinement is interpreted by the shrinking of gluon fields in an elastic string (Fig. 1).
The potential energy of a static qq̄ pair grows with the quark-antiquark distance r as

V (r) = σr. (5)

The string tension σ is computed in continuum QCD. The inputs are the standard values of the
vacuum condensates. The output is

√
σ ≈ 0.5 GeV and is very insensitive to quarks. Numerical

simulations on a lattice confirmed expression (5).
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The lattice approach to QCD means that each quark occupies its own site (or does not occupy
it) in an abstract spatial lattice (see, e.g. Ref. 35, 36): the quark field is defined on individual points
x of the lattice and the appropriate quark is connected with the neighbors by links [x, x ± aeµ]
where µ is the Lorentz index and a is the size of the meshes of the lattice. A typical lattice
constant a = 0.05− 0.1 fm is essential for accurate QCD simulations, though a ≈ 0.3− 0.4 fm also
works quite well; the challenge is to make the lattice spacing as large as possible while keeping the
discretization errors in the order of a few percent.

Non-perturbative gauge theory intractable calculations being considered on the lattice QCD
allow one to evaluate the path integral by stochastic simulation techniques.

String excitation energies can be estimated by the Wilson loop correlation function (see, e.g.
Refs. 37-39). Wilson loops are essentially phase factors in gauge theories. Wilson loops in QCD
are associated with the phenomenon of a phase change known as the Aharonov–Bohm effect [40]
in quantum physics. QCD can be reformulated by using the Wilson loops in a manifest gauge-
invariant way.

Basically the static quark potential (5) can be presented by an asymptotic expansion [41]

V (r) = σ r − α/r + µ r−d +O (1/r2), (6)

where α/r is the quantum correction that characterizes the relativistic bosonic string (Fig. 1) and
µ r−d is a regularization-dependent mass.

The string tension σ is the subject of intensive theoretical and experimental studies (see, e.g.
Refs. 42, 43 and also works [44, 45]). The value of σ is evaluated as a function of temperature
and the string tension points compared with the behavior of parameters of ferromagnets and
superconductors relating them to confinement.

The confinement of quarks is a big challenge and researchers for more than 30 years try to de-
scribe it suggesting most fundamental approaches [44, 45]. Greensite [44] reviewed the confinement
problem in SU (N) lattice gauge theory. He notes that a popular definition of the confinement is
based on the fact that all the low-lying hadrons fit nicely into a scheme in which the constituent
quarks combine in a color-singlet. No particles or gluons exist in a color non-singlet state. This ac-
tuality allows one to identify the confinement with the more general concept of color confinement,
which means that all asymptotic particles are color singlets. The linear potential V (r) ∼ σr is only
one of a number of properties of the confining force; a complete list includes the following: linear-
ity of the static potential, Casimir scaling, N-ality dependence, and string behavior: roughening.
Vortex-limited Wilson loops can be responsible for confinement to percolate through the lattice,
though this creates a difficulty associated with finite temperature (because in the time direction
the length of the lattice constant plays the role of inverse temperature and the change of the length
will represent a transition from the confining to the deconfining phase).

One of the oldest proposals for quark confinement is the confinement as an effect due to abelian
monopoles [44]; the idea is motivated by the squeezing of magnetic fields into flux tubes in type
II superconductors, and by the demonstrable confinement of heavy electric charge in a monopole
plasma, which arises in compact quantum electrodynamics in D = 3 dimensions. Greensite [44]
emphasizes the necessity of centre symmetry: the existence of a finite string tension is related
to the behavior of the centre vortex free energy; the asymptotic string tension of static quarks
depends on their color charge only through the transformation properties of the quarks under the
centre subgroup.

‘t Hooft [46] reviews new ideas on dynamic mechanisms of the absolute confinement, such as i)
stipulated by the lattice structure of QCD, ii) specified by a topological phenomenon, iii) caused
by a chain of gluons and iv) given by a renormalization of gauge-invariant effective actions.

In the lattice QCD the gauge field Aµ(x) is replaced by a connector operator U(x, µ) defined
on the link [x, x+ aeµ]:

U(x, µ)
def
=

(
ig

∫ x+eµ

x

Aµ dxµ
)

(7)

where g is the constant of interaction. The same link in the opposite direction describes the inverse
of the group element U. Lattice plaquettes U1U2U−1U−2 contribute to the functional integral for
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an amplitude containing a quark antiquark pair. Each plaquette gives a suppression factor 1/g2; a
total suppression factor rises to a power equal to the number of plaquettes needed to produce the
surface in between (

1/g 2
)`

= e−V (x1, x2) (8)

where ` is the distance between the quark lines; t is the interval in the Euclidean time direction.
Matrix elements of the operator e−tH include a potential term V (x1, x2) that increases linearly
with the distance ` between the quark lines. This means that the present potential confines the
interacting quarks.

A topological phenomenon is associated with the Higgs field potential

V (ϕ) = 1
2

(
ϕ∗ϕ− F 2

)2
(9)

where F is the vacuum expectation value of the Higgs field ϕ. The gauge transformation replaces
the ϕ field of a vortex by a field dissolved in the vacuum, which has ϕ → F everywhere. Such
vortexes represent magnetic monopoles and the vortexes possess end points. That is why in this
pattern magnetic monopoles are tied together by vortex lines and ‘t Hooft concludes: “Since
a vortex carries energy proportional to its length, one finds that in a Higgs theory, magnetic
monopoles are absolutely confined, exactly in the way one expects quarks to be confined in QCD”.

A chain of gluons implies that the energy of gluon fields in their environment tend to infinity
when the inter-quark distance goes to infinity. A confining potential from the start is chosen in
the form of a Coulomb potential, though this requires justification. Further infrared renormalized
procedures allows one to derive a Green function that includes a Yukawa potential

G(~x− ~x ′) = δ3(~x− ~x ′) − 8πσ

α|~x− ~x ′
exp(−

√
2σ/α |~x− ~x ′|), (10)

which exactly shows the confinement.
A renormalization of gauge-invariant effective actions is reduced to the consideration of a flux

tube (a “tube” between two quarks in Fig. 1) filled with a field of the energy density, the D-field,
where the energy density is defined as W (D) [46]. The vortex with given total flux Q=DΣ spreads
over a surface Σ in such a way that the total energy is minimized. Then the energy per unit of
length of this vortex is

ρ string = min (ΣW (D)). (11)

The functional on the right hand-side of Eq. (11) has a non-trivial minimum, which is reached
at special conditions and can be associated with the confinement.

A supergravity background that produces linear confinement of quarks in four dimensions
has recently been presented [47]. El Naschie [48] interprets quarks confinement involving a phase
transition of quantum spacetime at the Planck scale at which the confinement is absolute at a
certain energy scale limit where the Planck energy is MP = 1019 GeV.

As point out Alkofer and Greensite [45], the confinement problem becomes one of the truly
fundamental problems in physics. They mention that quark confinement is the essential link
between the microscopic quark-gluon degrees of freedom of QCD, and the actual strong-interaction
spectrum of color-neutral mesons, baryons, and nuclei. They conclude as follows: “Until this
phenomenon is well understood, something essential is still lacking in our grasp of the foundations of
nuclear physics, and the deeper mechanisms of nonabelian gauge theory. Although the confinement
problem is hard, the solution is important, and well worth pursuing. But it is certainly not excluded
that progress may come from some quite different direction” [45].

3. Other views on quarks and hadrons associated

with QCD

In the physics of quarks the researchers initially consider the interaction between two quarks, then,
as a second step, one introduces a third quark to this diquark system, etc., in order to obtain the
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complete wave function of a baryon; this method is a good approximation as long as three-body
interactions are rather small compared to two-body interactions [49]. The introduction of three
colors for each quark complicate the study, as a diquark system becomes non-distinguished from
an antiquark.

Modern experiments [50], first of all scattering experiments of electrons and positrons, provide
support for the standard model of six quarks with three colors. The idea of color charge allowed
one to explain how quarks could coexist inside some hadrons in otherwise identical quantum states
without violating the Pauli exclusion principle. Each flavor of quark belongs to the fundamental
representation, SU (3), and contains a triplet of fields ψ = (ψ1, ψ2, ψ3). These three indices are
usually identified with the three colors, such that after gauge transformation, the new colors are
linear combinations of the old colors. Nevertheless, the standard model of particles allows also an
arbitrary number of colors [51].

Moreover, the deep inelastic experiments do not rule out even integer-charge quarks [52-55]:
in higher orders of perturbation the integer-charge quark model gives results closer to those of
the fractional charge quark model and the properties like factorization of mass singularities, which
have been shown for the fractional charge quark model, assume also for the integer-charge quark
theory. Rajasekaran and Rindani [52] point out that a clear and unambiguous high-energy test,
which distinguishes the one model from the other, has not yet been found: “As long as it leads to
almost similar empirical phenomena to that of the fractional-charge quark model, it is going to be
very difficult to rule it out experimentally. It may even be the right model! Although exact SU (3)c
symmetry appears to be an elegant hypothesis, exact SU (3)c×U(1) does not look so elegant. Why
can’t the degenerate gluons and photon mix and break the symmetry?”

Thus in QCD the integer-charge quark is not ruled out, which was shown by conventional field
methods [52-55]. Integer charge quark theories (ICQ) fit experimental data far better than the
standard model does [54, 55]. In particular, Ferreira [54] have reviewed the evidence for fractional
quark charges and argued that they are not conclusive. On the other hand since ICQ theories are
renormalizable they demonstrate a good comparison with experiment data, which is held for any
order of perturbation theory; ICQ theories also predict identical rates for meson radiative decays.
In the end Ferreira [54] states: “Regardless of whether one believes in ICQ models or not, it seems
clear they do a better job than the Standard Model at describing the two-photon data.”

We will see that violating the Pauli principle is quite possible and even necessary in the
dynamics of quarks.

A light-front approach [56] to QCD formulates light-front Hamiltonian as a complementary
approach to the well-established lattice gauge method. It is a Hamiltonian method, formulated
in Minkowski space rather than Euclidean space. The essential ingredient is Dirac’s front form of
Hamiltonian dynamics where one quantizes the theory at fixed light-cone time τ = t+ z/c rather
than ordinary time t. The approach offers access to the hadron’s nonperturbative quark and gluon
amplitudes that allow testability in experiments.

The Nambu–Jona-Lasinio (NJL) model [7, 8] is considered to be a model for the low-energy
regime of QCD. The NJL Model is a non-renormalizable quantum field theoretical model for
dynamical chiral symmetry breaking; this model picks chiral symmetry but does not provide a
mechanism for confinement and, consequently, the NJL model needs a plausible explanation for
this neglect [57]. In the mean-field approximation the Lagrangian density is

L = L0 + ψ̄M ψ (12)

where the first term is the conventional Dirac Lagrangian density and the “effective” mass M
satisfies a self-consistent equation

M =
2GM

π2

∫ Λ

0

p2 dp√
p2 +M2

(13)

where G is a parameter with the dimension of square length. Eq. (13) has a non-vanishing
solution in the case when G > Gcritical. For these values of the coupling constant, chiral symmetry
is dynamically broken.
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The NJL model further describes [58] dynamical quark mass generation and spontaneous chiral
symmetry breaking and includes effects of the axial U(1) anomaly; mesons emerge as quark-
antiquark modes; the quark-diquark structure of baryons is developed, and a brief summary is
given on baryonic solitons as they result from the NJL model. A semi-classical NJL model of
an instanton liquid for mesons and quark condensates in which lowest multi-quark interactions
dominate look quite reliable [59]. Other aspects of the NJL model were considered in Refs. 59, 60.
Quark droplets of finite volume were formulated in the NJL model with a basic set of the quark
wave functions in the chiral bag model in work [61]; chiral symmetry breaking for the finite volume
bag was discussed in a mean field approximation, effects of the pion cloud including the chiral
Casimir effect were investigated, and physical quantities of the quark droplets, such as masses and
radii, were obtained for baryon numbers A ≤ 5.

The Skyrme [9, 10] field theory has static solutions of a singular nature, but finite energy,
characterized by spin directions. He introduced an additional term in the field gauge theory, which
makes it possible for baryons to interact with each other via the exchange of mesons. Skyrme [10]
introduced the Lagrangian

L =
f2
π

4
Tr [∂µU ∂ νU ] +

1

32g2
Tr [U∂µU, U∂νU ]

2
(14)

where the fπ is the pion decay constant, g is the constant known as the ρ-π-π coupling, the field

U = exp {i τ · ϕ/fπ} = (s + i τ · π) /fπ, (15)

τ is the vector containing The Pauli matrices, π the pion field. The first term in the Lagrangian
(14) is the usual nonlinear sigma model; the second part was introduced by Skyrme [10].

Skyrme revealed a family of classical static solutions approximating QCD at low energies,
which were called skyrmions. The appropriate equation of motion derived from the Lagrangian
(14) has the form

US = exp { i τ · r̂ F (r)} , (16)

where F (r) is a radial function satisfying certain boundary conditions [62].
Topological soliton solutions, or topological charges, minimize the energy and may be identi-

fied as the baryon number. The physical interpretation of these solitons is still not quite clear,
nevertheless, most recent studies account for skyrmions rather as coherent states of baryons and
excited baryons [62]. This model describes hadrons and their interactions without taking their
quark content into account. Nevertheless, electromagnetic properties of baryons calculated with
the Skyrme model are in agreement with experimental values for a number of baryons [63]; besides,
Weigel [63] shows that the NJL model can be employed to involve solitons in a microscopic theory
of the quark. One more application of the Skyrmion model is a possibility of Skyrmion (neutron)
stars that can be looked at as being made of fermionic soliton objects [64, 65]. It has recently
been found [66] that the single soliton in the Skyrne model is composed of N partons that are
topologically confined; multi-soliton solutions have been computed and related to polyiamonds,
which are plane figures composed of equilateral triangles joined by common edges. It is shown that
those solitons may be viewed as pieces of a doubly periodic soliton lattice.

The MIT bag model [11-14] was developed by nuclear physicists and reflects major peculiarities
of nuclei. It describes the particles as composite systems with their internal structure that can be
associated with quark and gluon field variables. In the model, quarks are forced by an external
pressure on the side of a vacuum and are able to move only in a closed spatial region, i.e. a bag,
in which quarks occupy single particle orbitals. When all the quarks are in the ground state, the
shape of the bag is spherical.

Each quark is described by the Dirac field inside a bag,(
−i γ µ ∂

∂xµ
+m

)
ψa(x) = 0. (17)

The boundary condition
i ~γ · ~n ψa = ψa (18)
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where γµ are the Dirac matrices and ~n is the unit normal vector. ψa(x) is discontinuous across
the surface of the bag, since ψa(x) = 0 outside. Eq. (17) allows one to calculate the energy and
momentum that flows through the surface. Momentum and energy flow inside the hadron studied
are characterized by a stress tensor T µνDirac(x). The total energy and momentum of the hadron
should not flow through the surface. The flow is given by nµT

µν
Dirac calculated on the surface; this

flow is reduced to the equation

nµ T
µν

Dirac = 1
2

∂

∂xν

(∑
a

ψ̄a(x) ψa(x)

)
. (19)

Since ψ̄aψa = 0 on the surface, its derivative lies along the normal,

∂

∂xν

(∑
a

ψ̄a ψa

)
= nν 2PDirac. (20)

Thus nµT
µν

Dirac = nν PDirac, which allowed the authors [11-14] to recognize PDirac as a normal
pressure on the surface of the bag. The conservation of energy and momentum within the hadron
requires an introduction of the other kind of a pressure to compensate the Dirac pressure PDirac.
Thus, it was postulated that the total energy momentum tensor consists of two parts

T µνhadron =

{
TµνDirac − gµνB (inside)
0 (outside)

(21)

Here, B is a universal constant with the dimension of pressure, E/V (in units of ~ = c = 1, B 1/4

has the dimension of mass). Thus the balance equation becomes

B = − 1
2

∂

∂ r

(∑
a

ψ̄aψa

)
= PDirac. (22)

If PDirac is produced by the energy and momentum flow inside the hadron, B is a fitting
parameter, which has a volumetric nature and can be interpreted as the pressure of an outside
vacuum on the whole bag (or more exactly, the bag surface).

Eqs. (17), (18) and (22) can be solved for the spherical shape (r = R) and in the ultrarelativistic
limit (m→ 0). In this case the quarks occupy the lowest mode with frequency ω = 2.04/R. Then
the energy of the hadron is directly derived from the equation

P 0 = E =

∫
d3x

(
T 00

Dirac +B
)
, (23)

such that

En = n
2.04

R
+

4π

3
BR3 (24)

where n is the number of quarks in the hadron. The first term in expression (24) is usual in
quantum mechanics; it represents discrete energy eigenvalues, i.e. the term depicts the kinetic
energy of the quarks that occupied the lowest orbital. The second term in expression (24) expresses
the stabilizing potential energy that results form the external pressure. Thus the introduction of
a phenomenological parameter B could guarantee the implementation of the boundary condition.

Minimizing Eq. (24) with respect to R makes it possible to obtain expressions for the radius
of the hadron and its energy as a function of the parameter B and the number n of quarks:

Rn = [2.04 n/(4πB)]
1/4

, En = 4
3 (4πB)

1/4
(2.04 n)

3/4
(25)

Introducing m 6= 0, the angular momentum and the interaction with color gluons complicate
the problem. The bag model was further developed by many researchers (see, e.g. Refs. 67-71).
In particular, in the book [72] the chiral bag model was considered as a hybrid model of the MIT
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Figure 2: Topological ball and the tessellattice formed of such balls.

bag model and the Skyrme model, which allowed a solution in a special configuration called the
hedgehog ansatz for a solitonic solution for the nucleon.

A review [73] on topological soliton models discloses the foundation of the approach and the
application of topology to classical field theory; the main accent is on a property called homo-
topy, which describes how two maps (such as two different field configurations) can (or cannot)
be continuously deformed into each other. In the context of physics, this deformation is often
interpreted as the time evolution of the system. Baryons allow description in chiral topological
soliton models in which they appear as topological excitations of an effective action that depends
only on the chiral field U(x). The study is based first on the Skyrme action (with an addition of
some others) [74, 75]. In the soliton picture the strong interaction properties are used; baryons are
computed following the SU(3) collective coordinate approach to the Skyrme model. In paper [75]
hyperon masses were described in the topological soliton model; these masses are very sensitive to
parameters of the gluon condensate, which contrasts with the insensitivity of the soliton properties
to coupling of quarks and gluons though a hypothetical particle ‘dilaton’. The bag formed by the
scalar field dynamically and emerged as very shallow.

On the other hand, a very popular approach also based on a non-topological soliton, which
represents a field configuration possessing, contrary to a topological one, a conserved Noether
charge and stable against transformation into usual particles of this field [76]. The mass sum of
free particles with the charge Q exceeds the total energy of the non-topological soliton so that the
soliton becomes energetically favorable to exist.

4. Leptons and quarks in the tessellattice

A detailed mathematical theory of the real physical space based on topology, set theory and fractal
geometry, was developed in works [16-19]. It was shown that the space is not a vague vacuum, but
a substrate arranged as a mathematical lattice of primary topological balls (Fig. 2). This lattice
was called a tessellattice; it was postulated that the size of a cell is equal to the Planck length√
~G/c3 ∼= 1.616× 10−35 m.

In the tessellattice balls are found in a tight state, which corresponds to a degenerate state
of the real space. This space holds for a quantum void since on one hand, it provides a discrete
topology, with quantum scales, and on the other hand it contains no “solid” object that would stand
for a given provision of physical matter. The appearance of a stable local deformation is possible
when a transformation of a cell involves some iterated internal similarity. Then the appropriate
cell becomes a particable ball, which thus is represented by a nonhomeomorphic transformation in
a continuous deformation of space elementary cells.

Since we have introduced a particle in the tessellattice, we must provide it with physical
properties. First of all this is mass: The mass mA of a particulate ball A is a function of the
fractal-related decrease of the volume of the ball:

mA ∝ (V deg. cell/V part) · (efract − 1)efract> 1 (26)

where V deg. cell is the typical average volume of a cell in the tessellattice in the degenerate state;
V part is the volume of the kernel cell of the particle; (e) is the Bouligand exponent, and (efract− 1)
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the gain in dimensionality given by the fractal iteration (just a volume decrease is not sufficient
for providing a ball with mass, since a dimensional increase is a necessary condition; there should
be a change in volumetric fractality of the ball [17, 18]).

Therefore mass appears as a deformation of a cell, i.e. at the volumetric fractal contraction
of the cell. This is typical for leptons, namely, V deg. cell/V lepton > 1 determines the lepton’s mass
(26).

In the tessellattice a lepton is a contracted kernel-cell (Fig. 3a). Surrounding cells compensate
this local deformation by morphic changes; namely, they move from the initial equilibrium positions
and are stretched, experiencing a certain tension (rather a radial tension) compared to cells in
the degenerate sate. These surrounding stretched cells form a peculiar deformation coat with a
radius identified with the particle’s Compton wavelength λCom, lept = h/(m0, lept c) (note this radius
manifests itself through the experiments on light scattering by particles). It seems the contracted
kernel-cell is unstable to radial standing oscillations that spread the deformation V deg. cell/V lepton,
i.e. the proper lepton’s mass m0, throughout the whole deformation coat [23]: the mass m0 decays
in the deformation coat such that its pieces are dancing in the deformation coat hopping from cell
to cell from the kernel-cell and back.

In the case of quarks the situation is reciprocal: the quark’s kernel cell has volume bigger than
the average volume of a degenerate cell, i.e. V quark/V deg.cell > 1 [17, 18]. Quarks are inflated
objects (Fig. 3b).

Since the notion of mass is associated with the decrease of volume of a cell, quarks definitely
do not possess mass as such, which is in agreement with requirements of QCD [77, 78]; quarks
can be described in terms of energy. Quarks manifest themselves through the unification, which
produces matter - mesons, protons, neutrons, etc. That is why a deformation coat of contracted
(i.e. massive) cells around unified quarks must exist as well. Thus the mass comes to the quark
through its deformation coat in which cells are contracted, i.e. are massive.

Due to the inflated kernel-cell, cells around the quark’s kernel-cell move apart from their
equilibrium positions. These moved cells should be a little bit contracted in the framework of the
quark’s Compton wavelength λCom,quark and the total sum of contracted cells has to compensate
the inflation of the kernel-cell. Hence in the quark’s deformation coat contracted cells around the
kernel-cell represent the quark’s total mass m0,quark (see the definition (26)) and this mass defines
the value of the quark’s Compton wavelength λCom,quark = h/(m0,quark c). It is reasonable to
assume that the inflated kernel-cell is unstable to radial standing oscillations, as is the case for a
lepton. At such oscillations, bits of the inflated state of the kernel-cell spread all over all other
cells of the quark’s deformation coat. This means that the quark’s deformation coat filled with
volumetric inflated excitations can be treated as a bubble.

A different fractional volume of the appropriate kernel-cell characterizes a set of leptons, i.e.
the more massive lepton, the smaller the characteristic radius of the appropriate kernel-cell. In
the case of quarks the situation is opposite: the larger the radius of the kernel-cell, the heavier the
quark.

4.1 The behavior of leptons

In the case of leptons it has been shown [23] that the deformation coat formed around the particle
participates in a common oscillation process of all cells of the coat. This process is described by
a single vibration mode. Further studies [27] showed oscillations of cells in the deformation coat
obey a standing spherical wave, i.e. the amplitude of oscillation of mass is inversely proportional
to the distance from the central point, m ∝ 1/r.

The motion of a lepton in the tessellattice was studied in works [20-24]. The developed submi-
croscopic mechanics is specified with the interaction with space, i.e. the tessellattice. As a result,
we arrived at the de Broglie’s relationships for a particle

E = hν, λ = h/(mυ), (27)

which in fact demonstrates a discrete structure of space, because λ plays the role of a spatial
period of the particle: each odd section λ/2 the particle emits excitations (due to the interaction
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Figure 3: Lepton (a) and quark (b) in the tessellattice. Each lepton is specified by its
own quantum size of the kernel cell and the same for quarks. The leptons kernel cell (a) is
less than a degenerate cell of the tessellattice; in the deformation coat around the kernel’s
lepton-cell cells are stretched, they have a certain tension (radially “inflated”) compared
to cells in the degenerate sate. The quarks kernel cell (b) is larger than a degenerate cell
of the tessellattice and one can anticipate a few quantum sizes; in the deformation coat
around the kernel’s quark-cell cells are compressed (radially “contracted”) compared to
cells in the degraded state. The size of the deformation coat is defined by the Compton
wavelength λCom = h/(mc). For the electron: λCom el. = 3.77 × 10−13 m; for the light
quarks u and d: λCom u, d ≈ 3.77× 10−14 m.

11



with space) and then each even section λ/2 it absorbs them back. Relationships (27) allow the
derivation of the Schrödinger equation, as was shown by de Broglie [79]. Excitations emitted by the
particle were named inertons. Submicroscopic mechanics enables us to determine a shape of the
‘particle-inerton cloud’ system: the inerton cloud is extended to the distance λ along the particle’s
path and to the distance

Λ = λ c/υ (28)

in transversal directions. Hence we know that the shape of the system in question resembles a
spindle and we know its size.

The motion of such extended particle looks like the motion of a liquid particle in a continuum.
The equilibrium state of volumetric fractals, which introduce deformations in cells of the liquid
particle, is related to the value of mass and therefore determines a density ρ of this liquid particle.
In the process of motion these deformations (volumetric fractals) in the appropriate cells have to

tense, which will produce a displacement vector ~ξ for our liquid particle. For the description of such
moving liquid particle we may employ the known results of field theories used in hydrodynamics.
Indeed, we may begin with the Lagrangian density (see, e.g. Ref. 80)

L = 1
2 (~̇ξ · ~̇ξ) − 1

2 υ
2 (∇ · ~ξ)2 (29)

where ~ξ is the displacement vector, or tension of our continuous system in the place occupied by
the liquid particle studied; υ is the velocity of the liquid particle. Matter is available only in a
volume V of the space occupied by the particle; let the matter be characterized by the density ρ
and let ρ0 be its initial, or equilibrium value. Then the continuity equation is

ρ̇ + ρ0 (∇ · ~̇ξ) = 0 . (30)

The Euler-Lagrange equations constructed on the basis of the Lagrangian density (29) and Eq.
(30) culminate in equations

~̈ξ − υ2∇ · (∇ · ~ξ) = 0, (31)

∆ρ− ρ̈/υ2 = 0. (32)

The most interesting is Eq. (32) that describes the propagation of density of the {particle-
inerton cloud} system; it takes the form of the wave equation for sound waves. The solution to
Eq. (32) can be searched proportional to | cos(4π ν t)|, which results in

∆ρ − 16 π 2

λ 2
ρ = 0 (33)

where we use the correlation ν = υ/λ; here ν is the frequency of the wave, λ is the wavelength and
υ is the sound velocity. Note that the role of the frequency ν of this peculiar sound wave plays
the frequency of collision 1/(2T ) of the moving particulate cell (the particle kernel, Fig. 1) with
its inerton cloud [20-23].

Eq. (33) can be modernized by using the second relation in de Broglie’s relationships (27)

∆ρ − 16 π 2m2υ 2

h 2
ρ = 0. (34)

Then utilizing the energy conservation law for our moving particle

E = mυ2/2 + V (35)

where V is a potential energy, we finally obtain instead of Eq. (33) an equation

∆ρ − 2m

~2
(E − V )ρ = 0, (36)

which appears as the Schrödinger wave equation, but the role of the wave ψ-function is played by
the density ρ of the {particle + inerton could}-system; since the ψ-function is dimensionless, the
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Figure 4: Particle moving together with its inerton cloud in the real space. The ψ-wave
function is a project of the {particle + inerton cloud}- system to an abstract phase space.
The particle moves squeezing in between cell, though the state of deformation coat adjusts
to the particle in any point of the particle’s path. Inertons migrate hopping from cells to
cells like excitons in molecular crystals.

normalized function ρ/ρ0 should exactly correspond to it. Note in Eq. (36) in the function ρ the
value of the mass field varies (rather than the volume V ), however, in the second term the value
of the parameter m must remain fixed (m represents the initial value of mass, i.e. the particle’s
inert mass m = m0/

√
1− υ2/c2). A complex part of ρ means that the appropriate part of the

particle’s mass is transferred to a tension of the surrounding space.
Thus we return a physical sense (Fig. 4) to the wave ψ-function, whose module so far was

interpreted as a probability of the particle location after Max Born since 1926 [81, 82]. The
physical pattern looks as follows: a moving particle is surrounded with a cloud of excitations
(named inertons in the author’s works), which exactly corresponds to the electron described by
Poincaré [83], who hypothesized that the moving electron should create a cloud of excitations in the
ether. De Broglie’s relationships (27) bound the particle’s parameters E and p with parameters
of the particle’s excitations – the section λ (the de Broglie wavelength that can be called an
amplitude of the particle) in which the particle’s velocity decreases to zero and then increases to
the initial value υ again, and the frequency ν of collisions of the particle with its cloud of inertons.
Relationship (28) connects the amplitude Λ of the inerton cloud with the particle’s amplitude λ,
the speed c of the cloud’s inertons and the speed υ of the particle.

In special relativity a vacuum is invariant under a Lorentz transformation and this transforma-
tion influences space that undergoes a Lorentz contraction. In the case of the tessellattice, which
substitutes a vague vacuum, the Lorentz contraction is passing on to the moving object, i.e. the
object itself experiences the Lorentz contraction. How this happens has been shown in Ref. 17:
the hidden structure of the initial Lagrangian

L = −m0 c
2
√

1− υ2/c2 (37)

emerges owing to the introduction of the interaction of the moving particle with space (i.e. the
tessellattice)

L = −m0c
2

√
1− 1

m0c2

{
m0ẋ2 +m

(in)
0 ẋ(in) 2 − 2π

T

√
m0m

(in)
0

(
xẋ(in) + υ0x(in)

)}
(38)

In expression (37) there is a process, which is hidden inside the expression: the moving particle
emits its inerton cloud (due to the friction with space) and hence we have two objects that travel
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Figure 5: Particle radius oscillates along the de Broglie wavelength λ.

together: the particle (mass m0) and its inerton cloud (mass m
(in)
0 ). The motion is specified

with the interaction

√
m0m

(in)
0 that takes place in the time interval T, which becomes the time

of collisions (and T −1 is the frequency of collisions). All this occurs in the section equal to the
particle’s de Broglie wavelength λ. The described inner kinetics is presented in the Lagrangian
(38). If the path of the particle is much longer than λ and the scale is rather close to macroscopic,
we may revert back to the classical consideration (37). The Euler-Lagrange equations obtained on
the basis of the Lagrangian (38) allow the study of the system {particle + inerton cloud} in detail
[21-24].

High-energy physics is expressed in a relativistic form. The energy expression (35) takes
a Newtonian form. In papers [17, 21-24] it is shown that owing to the transformation of the
relativistic Lagrangian (37) to the form (38), the kinetic energy of a very fast particle (υ → c)
emerges as follows

E = 1
2mẋ2, m = m0/

√
1− υ2/c2, (39)

though the total energy is still

Etotal = mc2, m = m0/
√

1− υ2/c2, (40)

where at the approximation υ → c the kinetic energy (39) is approaching to the total energy (40).
Therefore, all is correct when applying expression (35) to high-energy physics.

Let us list the main important properties of leptons revealed in the framework of submicroscopic
mechanics developed in the tessellattice.

The kernel-cell representing the particle changes along a particle’s path as Figure 5 depicts.
Thus spin-1/2 is a dynamic characteristic, which can be associated with periodical oscillations of
the surface state of the particle’s kernel-cell (electron, muon, τ -lepton) along the particle’s path [22,
23]: a mobile state (when it possesses the velocity in even points of the de Broglie wavelength λ/2 ·l
where l = 0, 2, 4, ...) changing to a stationary state (when the needles though are bended, but
immobile in the odd points of the de Broglie wavelength λ/2 · l where l = 1, 3, 5, ...). The integer
spin would belong to particles combined of two Fermi particles. Nevertheless in the case of a photon
the spin-1 is only words ? no any inner physical behavior for this quasi-particle (the electromagnetic
field particle) can be suggested. The phrase: ?photons obey the Bose-Einstein statistics? means
only that they are quasi-particles without spin-1/2 whose states change discretely. In the case
of cold diluted gases that form a Bose-Einstein condensate, the situation is not associated with
the value of spin as well: each atom irradiates its proper inerton cloud that then is completely
absorbed by the neighbor atom [24]. It seems the Bose-Einstein statistics describes quantum
particles/quasi-particles that do not have spin at all.

The value of mass m, a total fractal volumetric deformation of the particable cell, oscillates
along the section λ as well: the mass m periodically changes from m to 0 and then again to m
(Fig. 5), though the tension of the particle varies from 0 to ξ and again to 0 [28].

The electric charge is the state of the kernel particle associated with its surface [26]: a positively
changed particle has the surface of a typical chestnut – amplitudes outside; a negatively charged
particle has the surface on which surface amplitudes are oriented inside the appropriate topological
ball. The value of charge e oscillates along the section λ as well: the charge periodically changes
from e to 0 (in even points λ/2 · l, where l = 0, 2, 4, ...), though the tension electric state, which
corresponds to the magnetic monopole state of the particle, varies from 0 to g (in odd points λ/2 · l,
where l = 1, 3, 5, ...), see Fig. 6.
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Figure 6: Motion of the electrically changed particle: positive (left) and negative (right).
The elementary charge periodically changes to the magnetic monopole state (in odd points
λ/2 · l of the path, where l = 1, 3, 5, ...); two possible magnetic polarizations (right and
left) are shown. So the charged particle is a dyon (it possesses both electric and magnetic
charges).

The photon and the inerton are shown in Fig. 7 (more amply read in papers [25, 26, 28]).
These neutral quasi-particles (though the photon is electromagnetically polarized) migrate by a
relay mechanism hopping from cell to cell in the tessellattice.

4.2 The behavior of quarks

An important provision of the submicroscopic concept stated in the previous subsection is the
interaction of a moving particle with the space that is a substrate constituted in the form of the
tessellattice. Such an interaction must be presented in the case of a moving quark as well. Thus
the interaction with the tessellattice has to introduce some nonlinearity in the behavior of quarks.

As seen from Fig. 3b the quark is in fact a bubble in the tessellattice. It is reasonable to
assume that by analogy with leptons, its kernel cell constantly exchanges with the quark’s coat by
excitations: the inflated state periodically decomposes and inflated excitations spread and oscillate
in the medium of compressed (massive) cells of the quark’s deformation coat. Due to the central
symmetry, such oscillations of inflated excitations can be compared to oscillations of a gas in a real
bubble, in which the gas oscillations obey the inverse law, ∝ 1/r. Hence the vibration energy of
the quark

Evib ∝ 1/r. (41)

These excitations are ‘inflated inertons’, or ‘inverse inertons’; below we will name them qinertons
(quark-inertons).

The naked quark (Fig. 3b) is unstable and collapses under the pressure of the whole space.
But interacting with another partner(s) they jointly form a stable hadron. The nature of quark
confinement is visualized with the use of an elastic bag (bubble) that allows the quarks to move
around freely; the bag-bubble is stabilized against the pressure of the confined hadron constituent
fields by vacuum pressure and surface tension [67].

Let two bubbles interact (see, e.g. Ref. 84), which means that their surfaces overlap forming
a structure shown in Figure 8. In the place of touching the bubbles make a channel with a cross-
section πε2. Disappearance of two borders between the bubbles in a local place means that the
energy of the bubbles decreases to the value of ∆E = −2γπε2 where γ is the coefficient of the
surface tension of the bubble. If we put 2χ << 2R, where R is the radius of the bubble and χ is
the range of overlapping of the bubbles, this will mean that the total fusion of the bubbles does
not occur. Then from the equality R2 = ε2 + (R − χ)2 we get ε2 ∼= 2Rχ. Hence the energy of
attraction of two bubbles becomes

∆Eatt. = −2 π γχ · (2R− χ) ≈ − 4πγχR (42)

15



Figure 7: Motion of two field particles: the photon and the inerton, which are basic
quasi-particles of the tessellattice. The photon’s polarization periodically changes between
electric (in even points of its path, λ/2 · l, where l = 0, 2, 4, ...) and magnetic (in odd
points of its path, λ/2 · l, where l = 1, 3, 5, ...).

and R is the radius of the quark’s bubble (which can be associated with the quark’s Compton
wavelength). In Eq. (42) substituting R by r (the distance between the quarks) and putting for
the coefficient 4πγχ = σ, we obtain

∆Eatt. = − σ r. (43)

Combing Eqs. (43) and (41) we arrive at the static quark potential (6), which we will discuss
in detail below in section 4.3.

So expressions (43) and (41) result in the static quark potential (6). Thus the confinement, i.e.
a linear dependence of the interaction energy of quarks on a distance r, is quite natural and derived
from the geometry of the contact of two quarks solvated with the quark’s proper excitations named
qinertons. The interaction proportional 1/r is caused by the emission of standing spherical waves
of qinertons by a quark in the quark’s bubble. This is shown in Fig. 9.

Each quark experiences an outside compression pressure

Pcompr = P0 + 2 γ/R (44)

on the side of the tessellattice and the bubble surface.
Let us consider a full merge of bubbles. Let N be the number of cells contained in the bubble.

qinertons migrate through these cells and these excitations can be treated as analogous of gaseous
molecules in a soap bubble. Therefore we may associate the number N of these excitations in the
bubble with its volume 4πR3/3, the pressure P produced by these excitations and the temperature
Θ:

P 4πR3/3 = N kBΘ (45)

where kB is the Boltzmann constant. From Eq. (45) we get the pressure in the bubble P =
3N kBΘ/(4πR3). The equality of the compressing Pcompr and the stretching P pressure allows us
to derive the number of qinertons N via other parameters:

N =
4πR3

3 kBΘ

(
P0 +

2 γ

R

)
. (46)
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Figure 8: Agglutination of two bubbles with quarks located at the bubbles’ centers.

a b

Figure 9: Confinement of quarks (which is explained in Fig. 8) when they interact with
the static potential V (r) ∝ r (a); free quarks when they interact with a static potential
V (r) ∝ 1/r (b).
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The merger of n bubbles is an efficient process. The number of qinertons in a resultant bubble
with a radius R is ℵ = nN , which allows us to derive an equation

2 γ

P0
=
nR3 −R3

R2 − nR2
. (47)

In order to decrease the energy of the bubbles merged together, i.e., reduce pressure on them on
the side of the surface and the tessellattice, it is necessary that the numerator and the denominator
in Eq. (47) are negative; this is possible when the following inequalities are held (see Ref. 84, p.
37):

R3 > nR3, R2 < nR2. (48)

Applying inequalities (48) to the problem of quarks, we obtain for the meson and the nucleon,
respectively:

21/3 < R/R < 21/2, 31/3 < R/R < 31/2. (49)

Therefore, the united bubble is characterized by a lower Young-Laplace pressure on the quark,
2γ/R < 2γ/R.

Besides, the agglutination of the bubbles allows the quarks to gain an angular motion, which
seems to become the major stabilizing factor for existence of the bubbles in the agglutinated state.
Indeed, a pair of the agglutinated bubbles, which is extremely quickly rotated, exhibits the integral
of the moment of momentum J 6= 0. Such a characteristic is lacking for a single quarkable ball in
the tessellattice in which a ball (a cell of the tessellattice) is deprived of the opportunity to rotate.
That is why the compressing pressure Pcompr at which outside balls of the tessellattice attack the
rotating quarks’ bubble does not have enough power to collapse the bubble. The equivalent of the
sound velocity for the tessellattice is the velocity of light c; hence with this velocity surrounding
balls attack the bubbles. The energy of hadrons is hundreds of MeV, which means that the velocity
of rotating quarks in them υquark ≈ 0.997 c. These two velocities are very close to each other and,
therefore, only the vortex state of the quarks can keep the bubbles from collapsing.

As we mentioned above, studying the quark systems, researchers initially consider the inter-
action between two quarks, then add a third quake, four, etc., which is needed to arrange a wave
function of the baryon studied. Quarks are treated as points or rather pseudo-points. The main
task is the calculation of the eigenvalue and the binding energy of quarks. But at such an approach
diquark system becomes non-distinguished from an antiquark.

The idea of diquark and the achievements of submicroscopic mechanics in the realm of leptons
allow us to reconsider the approach to the interaction of quarks. Indeed, the submicroscopic
consideration of electrodynamics shows that magnetic monopoles are real entities [26] (Fig. 6),
though they are hidden in the inner points of the path of a charged particle. In other words, the
moving charged particle periodically changes its charge state to the monopole state. The surface
structure of quarks should be the same as in the case of leptons, i.e. needles directed inside (the
negative charge) or outside (the positive charge). The combed needles correspond to the magnetic
monopole state.

The motion of quarks (Fig. 9) should also obey submicroscopic mechanics, as described above
for the case of leptons, because the quark is surrounded with its qinertons and its motion occurs
in the tessellattice, which all together is the quark’s wave function. This cloud as a whole can
be associated with a gluon of QCD. The qinertons also carry electromagnetic properties, as the
quark is a charged particle. So, the electrodynamics of a quark is the same as for the electron and
positron (Figs. 6, and 7). This means that the electric charge of quarks is integer: ±e (neither
±2e/3 nor ±e/3). Below we put for the quark u the charge +e, for the quark d the charge −e.
The antiquark ū has the charge − e and the antiquark d̄ has the charge + e.

Then the structure for the lightest π-mesons can be presented as follows:

π0 = d u, π+ = u gd, π− = ū gd̄ (50)

where gd and gd̄ are magnetic monopoles of the quark d and antiquark d̄, respectively. Inside
of the π±-meson the magnetic monopoles gd and gd̄ rotate emitting their own qinertons and
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exchanging with similar excitations of the quarks u and ū, respectively. In such presentation the
π−-meson is the antiparticle to the π+-meson and hence their masses are the same. Formulas (50)
give automatically known transformations of quarks to leptons (i.e. a bubble collapses to a local
deformation, from Fig. 3b to Fig. 3a):

π+ → (u) + (gd) →
{
e+ + νe
µ+ + νµ

, π− → (ū) + (gd̄)→
{
e− + ν̄e
µ− + ν̄µ

, (51)

i.e., two pairs of the quark and antiquark: u and gd, and ū and gd̄, disintegrate and the quarks
and the antiquarks collapse, i.e. they mutate to leptons (51).

In the Standard Model isospin arguments indicate that the π0 state is (uū−dd̄)/
√

2. However,
what does this mixed state of uū and dd̄ really mean with the addition of the factor of 1/

√
2?

This state shows a mix of wave ψ-functions of the corresponding quarks. What do those wave
ψ-functions mean in the formula (uū− dd̄)/

√
2? What is the kinetics of quarks inside the meson?

That is, how do the quarks and antiquarks move inside of the π0-meson that is characterized by
such formula? It is not possible to imagine. The formula (uū − dd̄)/

√
2 is rather an abstract

writing to satisfy some abstract formalism.
However, as has been shown above, the wave ψ-function in the Schrödinger equation (35) is

the real thing associated with the central particle and its cloud of excitations. In the case of the
present approach the quarks inside of the π0-meson are moving by known trajectories (see below
the section 4.3). That is why the simple structure of π0-meson presented in expression (50) is
plausible. Indeed, the pion is neutral and can annihilate by the scheme

π0 → (d) + (u) →
{
γ + γ
e− + e+ + γ

. (52)

Although experimental studies [85] of the decay of π0 were carried out in detail, they did not disclose
an inner structure of this subatomic particle; the major issues that allowed the examination were
the conditions at which the pion appeared and the accurate measurement of its lifetime.

The structure of quarks in the Standard Model is described by unitary symmetry SU(3).
Account of the Fermi-Dirac statistics for quarks leads to a splitting of each flavor in three colors,
which brings the strong interaction to QCD that operates with color charges exchanging color
gluons.

The earlier SU(6) theory [86, 87] successfully explained many experimental facts, but later was
rejected because it was thought that from the fundamental point of view, SU(6) was contradictory.
SU(6) theory assumes that quarks obey the Fermi-Dirac statistics, but in reality it looks as if they
obey the Bose-Einstein statistics.

This paradox was explained by Nambu [88] on the example of the Ω− baryon. Its spin is 3/2,
and the strangeness −3, so it occupies a state in which the spins of all three S-quarks are parallel.
However this state is symmetric under permutation of any pair of particles, in contradiction with
the requirement of the Fermi-Dirac statistics. But if for this situation one applies the Bose-Einstein
statistics, then for the Ω− particle (as well as for other baryons) the values derived by using the
SU(6) become consistent with experimental data. So, it turns out that in baryons quarks behave
as bosons, but the quarks are separated. Thus, it was recognized that the theory of SU(6) connects
the properties that are mutually exclusive and therefore it is too unrealistic.

However, in terms of the proposed deterministic submicroscopic theory this imperfection of the
SU(6) theory becomes its advantage. In fact, in our model quarks obey the Fermi-Dirac statistics.
However, in hadrons quarks are ultrarelativistic and hence their clouds of excitations are small and
do not overlap.

The absence of overlapping clouds immediately prevents the Pauli exclusion principle. The
cloud irradiated by one quark is absorbed by another quark. The situation is similar to the
behavior of dilute gases of atoms under laser cooling, when a moving atom irradiates the atom’s
cloud of inertons and its neighbor completely absorbs the cloud [24].

In nuclear physics the proton and neutron are different only in their isospin projection. How-
ever, this notion does not seem fundamental but simply is useful in the appropriate algebra. Indeed,
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Figure 10: Nucleon. The pion, i.e. π0-meson, which can be treated as an inner vortex,
is rotated together with quark d (the case of the proton) or with the magnetic monopole
gu (the case of the neutron). The pion and the quark d produce their own vortex in the
proton. The pion and the magnetic monopole gu produce the vortex in the neutron.

what is the isospin? It is a phenomenological notion, which rather has no physical sense. It ap-
pears in some mathematical abstract considerations, that is all. For instance, for an individual
homo sapiens we may also introduce a notion of a “pseudospin”, why not? In fact: one projec-
tion of homo sapiens is the male, the other projection is female. Is there any benefit of such a
determination?

We may suggest the structure of a nucleon as depicted in Fig. 10. Namely, instead of the
generally accepted view that the structure of the proton and the neutron respectively are p = d u u
and n = d d u, we may suppose a couple of other versions for the formulas of nucleons. It seems
the more plausible are p = duu and n = dugu, or in the explicit form

p+= (du, u) = (π0, u), n0= (d u, gu) = (π0, gu) (53)

where the structure of π0 is defined above (50).
Fig. 10 illustrates how the nature avoids the problem of three bodies, which does not have a

steady-state solution: Initially two quarks form a stable vortex system; then this system jointly
with one more quark/monopole forms another vortex stable system.

As is known, W± bosons are mediators of neutrino emission and absorption. Their charge
manifests itself through emission or absorption of electron/positron. The emission of a W+ or
W− boson by a baryon either raises or lowers its electric charge by one unit, and also changes
the spin by one unit. These bosons cause nuclear transmutation. The Z0 boson is detected as
a force-mediator whenever neutrinos scatter elastically from matter and their appearance is not
accompanied by the production or absorption of new charged particles. Three bosons W±, Z0 and
the photon represent the four gauge bosons of the electroweak interaction. Let us look how the
bosons of the weak interaction appear in the submicroscopic approach.

A decay of a hadron takes place mostly under an impact of perturbative conditions. In other
words, spontaneous pairs of quark-antiquark must stimulate the decay. For instance, in the frame-
work of the submicroscopic approach the decay of the neutron (presented below as a combination
of quarks d and u, and the magnetic monopole gu) occurs at the collision with a quark-antiquark
pair uū by the following formula:

(d u + gu) + {uū} → (du + gu + u + ū) → (d u + u+ gu)

→ (d u + u) + (ū gu) . (54)

That is, we have obtained
n0 → p+ +W−, (55)
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or in other words, we just revealed the inner structure of the combined particle W−: W− = (ū gu).
This boson is composed of the antiquark ū and the u-quark’s magnetic monopole gu, which rotate
around each another (note an idea about a compositeness of W± and Z0 bosons has already been
expressed [89] in the framework of the Next-to-minimal supersymmetric standard model). Under
the compressing pressure (44) this combined particle collapses in a short time of around 3× 10−25

s, such that each of the components changes its quark state (Fig. 3b) to the appropriate lepton
state (Fig. 3a). Namely,

W− ≡ (ū gu) →
(
e−, ν̄e

)
→ e− + ν̄e. (56)

Then the antiparticle to the boson (56) is

W+ ≡ (u gū) →
(
e+, νe

)
→ e+ + νe. (57)

The third boson of the weak force seems to have the structure

Z0 = (uū) →
{
γ + γ
µ+ + µ−

. (58)

The moving electron is shown in Fig. 6 (right). The antineutrino can be seen in Fig. 6 (left)
at the point λ/2. The antineutrino travels without changes in its monopole state along the whole
path. Because at the creation of a pair of particle-antiparticle, the particle and the antiparticle
emerge only in the electric state; the magnetic monopole state is an interjacent state (Fig. 6) and
without the accompanying inerton-photon cloud this state cannot be changed (about the motion
of a charged particle see Ref. 26 for details).

Fig. 11 depicts a typical structure of a hadron that consists of a quark q and antiquark q̄; such
a pattern is typical for π0-mesons, Z0-bosons and similar hadrons.

Fig. 12 pictures a typical structure of a hadron that consists of a quark q and the magnetic
monopole gq̄; such a pattern is typical for π±-mesons, W±-bosons and similar hadrons.

At a fast non-adiabatic process (annihilation, explosion, decay) the magnetic monopole can
be released from the combined hadron in question breaking the sound barrier in the tessellattice,
which is the velocity of light c. Coming through the barrier the quark state collapses to the lepton
state (the transition from Fig. 3b to Fig. 3a) and the quark’s magnetic monopole becomes the
corresponding lepton’s magnetic monopole. This lepton’s monopole is known as a neutrino that
travels with the velocity close to c. In its motion the neutrino interacts with cells of the tessellattice
and generates a cloud of inertons. The motion should obey relationships (27). With a neutrino
energy around 1 GeV (i.e. mc2 = 1 GeV = 1.6 × 10−10 J) we may estimate its velocity υneutrino

equal to about c (maybe 0.99c). We deduce from relationships (27) the neutrino’s de Broglie
wavelength λ ∼ 10−16 m and the frequency ν ∼ 1024 Hz of the neutrino oscillations along its path.
In transversal directions the neutrino’s inertons reach a distance Λ = λ c/υneutrino ≈ λ ∼ 10−16 m.
The larger the neutrino’s energy, the shorter is λ and the smaller Λ, though the frequency ν grows.
In each odd section λ/2 of the neutrino’s path it emits inertons and gradually loses its velocity
and mass; during each even section λ/2 the neutrino re-absorbs its inertons and restores its mass,
and inertons colliding with the neutrino reset its initial velocity, and so on.

If the neutrino starts to move with the speed υneutrino > c, then at impacts with oncoming cells
of the tessellattice the neutrino will excite them, so that after passing a cell, the cell will quickly
relax, generating an inerton and/or photon in transversal directions. And such motion signifies a
kind of a real friction (the bremsstrahlung). Tracks of γ-quanta after passing of a neutrino have
never been observed; this means that the speed of neutrinos is less than c (see also Ref. 90).

4.3. On the structure of a nucleon

Nuclei are bound together by the residual strong force (the nuclear force), as QCD claims. On
the other hand, because of the well-known difficulty of QCD in the non-perturbative domain,
many effective models reflecting the characteristics of the strong interaction are used to study the
behavior of nucleons. QCD remains indispensable in the study of nuclear phenomena of the quark
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Figure 11: Hadron formed by the quark q (with the charge − e) and the antiquark q̄
(with the charge + e). a – the quark q and the antiquark q̄ are found in the initial state;
b – each of the quark q and the antiquark q̄ has passed the section λ/2 of their paths and
their state is transformed: q → gq (i.e. from the quark state to the monopole state) and
q̄ → gq̄ (i.e. from the antiquark state to the antimonopole state). Then passing the next
section λ/2 these entities interacting through spatial inflated excitations, i.e. qinertons,
change the configuration to the initial state (Figure a): the quark q and the antiquark q̄,
respectively. And so on.

structure of the nucleon. To such models belongs the MIT bag model, the Friedberg-Lee soliton
bag model [91], the quark-meson coupling model [92, 93], the π − ρ − ω-meson coupling Skyrme
soliton model [94] including an effective nucleon-nucleon force of the Skyrme type [92], the chiral
SU(3) quark model [96, 97], the quark mass density-dependent model and the quark mass density-
and temperature- dependent model [98], the chiral soliton model where baryons are described as
non-topological solitons [99], and others.

The meson theory of nucleon coupling, i.e. a pion exchange between nucleons, does not look as
a logical mechanism that binds the nucleons: the energy of pions is around 140 MeV, which is only
6.7 times less than the energy of the nucleon. How often are these pions emitted by one nucleon
and absorbed by another? What is the duty cycle? What is the mechanism of the emission?
Comay [100] showed that the Yukawa theory proposed in the past to describe the nuclear forces
is undergoing significant theoretical difficulties and inconsistency; an analogous argument proves
that a Yukawa particle cannot be associated with the real π0-meson.

High precision measurements [101] of the deuteron electromagnetic structure functions (A, B
and T 20) extracted from high-energy elastic ed scattering, and the cross sections and asymmetries
extracted from high-energy photodisintegration γ + d → d + n allowed the authors to conclude
that the experiments do not prefer any of the approaches: the residual quark-gluon interaction
and the meson exchange. Moreover, both approaches seem to disagree. The authors tested the-
oretical considerations that included non-relativistic and relativistic models using the traditional
meson and baryon degrees of freedom, effective field theories, and models based on the underlying
quark and gluon degrees of freedom of QCD, including non-perturbative quark cluster models and
perturbative QCD.

Among new approaches to the problem of the origin of nuclear forces we can mention Santilli’s
[102] approach based on the introduction of hadronic mechanics, which operates with a nonunitary
transform of orthodox quantum mechanics, i.e. in the approach, which is algebraic, due to the
strong interaction, one cannot separate the kinetic and potential energy in the nuclear system
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Figure 12: Hadron formed by the magnetic monopole gq of the quark q (with the charge
− e) and the antiquark q̄ (with the charge + e). a – the magnetic monopole gq and
the antiquark q̄ are found in the initial state; b – each of the entities, the monopole
gq and the antiquark q̄, has passed the section λ/2 of their paths and their state is
transformed: gq → q (i.e. from the monopole state to the quark state) and q̄ → gq̄ (i.e.
from the antiquark state to the antimonopole state). Then passing the next section λ/2
these entities interact through spatial inflated excitations, i.e. qinertons, and change their
configuration to the initial state (Figure a): the magnetic monopole gq and the antiquark
q̄, respectively. And so on.
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studied.
The author [27] carried out a preliminary study of the problem of nuclear forces in the frame-

work of the submicroscopic approach a few years ago. Taking into account the study [27] we may
now consider a nucleus in more detail.

Let us initially unify quarks d and u to the π0-meson state (50), as is shown in Fig. 10. For
this we shall solve the problem of two bounded charged particles (see, e.g. Ref. 103), which in our
case of two quarks in addition they are bounded through the potential of the strong force. For the
Coulomb interaction of the quarks d and u the potential is

VCoulomb = − e2

4πε0 |rd − ru|
(59)

where rd and ru are coordinates of the quarks. For the strong interaction of the quarks d and u
(in the interior of the bubble, Fig. 9), which occurs through qinertons, the potential is

Vstrong = − hc

|rd − ru|
. (60)

Since the ratio Vstrong/VCoulomb
∼= 137.1597 × 2π, we may neglect the potential (59). The

potential (60) is completely non-perturbed and deals with energies less than 10 MeV, therefore,
such presentation (60) does not contradict with data analyzed by Bethke [33]. Then the Lagrangian
that describes two bounded quarks reads

L = 1
2md ṙ

2
d + 1

2mu ṙ
2
u −

hc

|rd − ru|
. (61)

We can pass on to the coordinate of the center of gravity rc.g. = (mdrd + muru)/(md + mu) and
the relative coordinate r = rd − ru, which then changes the Lagrangian (61)

L = 1
2 (md +mu) ṙ 2

c.g. + 1
2µ ṙ

2 − h c

r
(62)

where the reduced mass is
µ = mdmu/(md +mu). (63)

Let the centre of gravity be motionless; then the first term in Lagrangian (62) becomes zero.
Now we can solve the Schrödinger equation (36) having preserved the two last terms in the

Lagrangian (62) in which we can insert the relativistic masses of the quarks. The result is the
problem of the hydrogen atom whose solution is known. In particular, we can write the radius of
the orbit for the reduced mass µ. In the conventional case of the hydrogen atom, this is the Bohr
radius

rBohr =
~2

melectron
e2

4π ε0

. (64)

For the case of the strong potential (60) the solution for the radius of the reduced mass µ is

r0 =
~

2 πµ c
. (65)

Let us first consider a free π0-meson. Its energy is 135 MeV. We may put for the u and d quarks
the rest energy 3 and 5 MeV, respectively; then their total energies in the π0-meson respectively
are 50.625 MeV and 84.375 MeV. From expression (63) we get for the reduced meson mass µπ0 =
5.6325×10−29 kg. Substituting this value into the expression (65), we obtain r0, π0 = 0.99×10−15

m.
Now we can consider a nucleon. In the proton an energetic π0-meson and a quark u rotate

around one another; in the neutron π0-meson and the u-quark’s monopole gu are rotating around
each other. We shall emphasize that since two particles are found in the same orbit, the section
between them along the orbital path is equal to the de Broglie wavelength for each of the particles.
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How is the energy Enucleon = 939 MeV distributed among the π0-meson and its rotating
partner? Let 3/4 · Enucleon accounts for the π0-meson (because it consists of two particles and as
the whole the meson is also a particle) and 1/4 ·Enucleon for its partner (the quark u for the proton
or the monopole gu for the neutron). In such case the mass of the reduced particle in the nucleon
is µnucl = mπ0 mu/(mπ0 + mu)∼= mπ0 mgu

/(mπ0 + mgu
) ∼= 3.71 × 10−28 kg. After that we can

calculate the radius of the orbit of this reduced particle by using expression (65):

r0, nucl = 0.2× 10−15m. (66)

The cloud of qinertons for the reduced mass µnucl has amplitude

Λ ≈ λdeBrog c/υ + r0, nucl|υ∼=c = πr0,nucl + r0,nucl ≈ 0.83× 10−15 m, (67)

which does not exceed the radius of the unified bubble created around the nucleon’s three quarks,
i.e. the amplitude of the cloud of qinertons is less than the Compton wavelength of the nucleon:
Λ < λ Com, nucl = 1.32 × 10−15 m. Therefore, qinertons generated of the quarks in motion are
located strictly inside of the nucleon, namely, in the range limited by the radius Λ ≈ 0.83× 10−15

m.
Now we can turn to recent experimental data [104]: The physical picture is that the proton is

comprised of three regions: an outer cloud of qq̄ condensed ground state of size rq q̄ ≥ 0.86×10−15

m, an intermediate shell of baryonic charge of size rB = 0.44 × 10−15 m, and a core of size
rc = 0.2× 10−15 m, where valence quarks are confined.

The same authors [105, 106] further note that these experimental results allow a description in
terms of the topological soliton model of the nucleon. For this purpose they introduce an abstract
scalar field ς of an undetermined nature. Manipulating with the ς they arrive at the topological
soliton model in which the large mass problem is resolved by tearing the scalar field ς at the critical
size rc = 0.2 × 10−15 m, i.e. the pion decay coupling constant fπ (= 93 MeV) [106], drops down
sharply to zero at r < rc, which decreases the mass of the soliton by a significant amount; this
allows them to associate the model with a chiral bag model. The region rc < r < rB was called the
shell of topological baryonic charge density. At r > rB, the scalar field ς decreases smoothly, which
makes here the quarks and antiquarks massive and lowers the energy of the Dirac sea. Hence, the
region rB < r < rq q̄ should represent a qq̄ condensed ground state that forms an outer cloud of
the proton.

Such a topological soliton model of the proton was called a ‘Condensate Enclosed Chiral Bag’
[106]. In the end the authors assert: “The consequent discovery of the structure of the proton at
LHC at the beginning of the 21st century will be analogous to the discovery of the structure of the
atom from high energy α-particle scattering by gold atoms at the beginning of the 20th century.”
A similar Skyrme model in which chiral rotation of the scalar and pseudo-scalar fields lead to the
linear sigma model favoring the identification of the scalar field to the scalar sigma was developed
in work [107].

Nevertheless, from the physical point of view, a non-topological soliton model [90] looks more
preferable. Indeed, a bag model exhibits physical characteristics very similar to those of a “gas
bubble” immersed in a “medium”: the model operates with a constant surface tension and a
constant pressure exerted by the medium on the gas in the bubble; besides, the model includes the
thermodynamic energy of the gas and the related gas pressure.

The submicroscopic description of the behavior of quarks presented above agrees rather with
the physical pattern of a “gas bubble” constructed in Ref. 91. Let us now compare our theoretical
results with the experimental data [106]:

1) a core of size rc = 0.2× 10−15 m, where valence quarks are confined – this exactly
corresponds to the radius (66) of the orbit of the reduced particle of the nucleon;

2) an outer cloud of qq̄ condensed ground state of size rq q̄ ≥ 0.86 × 10−15 m – this
conforms to the amplitude (67) of the cloud of inflated excitations generated by the
reduced particle in the nucleon;

3) an intermediate shell of baryonic charge of size rB = 0.44× 10−15 m – this is the
inflection point of the static quark potential (6), which in the explicit form combining
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expressions (43) and (60) can be read

V (r) = −σr − hc/r. (68)

In this potential the two terms are negative and they describe attraction. The first
term is negative, because it is stipulated by the mechanism of the attraction of bub-
bles, expressions (42) and (43). The second term is dictated by a spherical standing
wave generated by each of the quarks in the system under consideration: the quark
periodically decomposes, i.e. it throws off its inflated state by portions and the stand-
ing spherical wave spreads these qinertons along a relief given by the deformation coat
of the quark (Fig. 3b); it is this peculiar relief that directs two quarks – through their
qinertons – to each other. The extremum of the Eq. (68) is reached at the solution
of the equation dV/dr = 0, i.e. σ − hc/r2 = 0. This equation gives the solution for
the inflection point

rinf
∼=
√
hc/σ (69)

that can be identified with the shell of baryonic charge rB = 0.44× 10−15 m of Ref.
104. In the point r = rinf the potential (68) is maximal, as V ′′ (rinf) < 0, which
means that at r = rinf the attraction is minimal.

Thus Nature does not solve the problem of three bodies; Nature reduces the problem to a
system of two bodies, which allows an analytical solution, as has been discussed above.

Expression (69) allows us to estimate the value of the surface tension of the quark’s bubble.
Indeed, for the constant σ we get σ = hc/r2

inf
∼= 1.027× 106 Jm−1. With account for expressions

(42) and (43), we obtain an estimate of the tension of the quark’s bubble:

γ = σ/(4πχ) ∼ 1020 Nm−1 (70)

where we set the depth of overlapping χ ∼ 10−16 to 10−15 m (see Fig. 8). For example, for
some liquid substances typical values of the surface tension at a room temperature are: 0.465
Nm−1(mercury), 0.073 Nm−1 (water) and 0.03 Nm−1 (soap water).

According to the theory described above a nucleon is a typical bubble and its surface
film (interface, or membrane) is specified by the thickness from r = Λ ≈ 0.83×10−15 m to
r = λCom, nucl = 1.32× 10−15 m. Such a bubble with the membrane is shown in Fig. 13.

It is interesting that proton charge radii obtained from electronic measurements and the hydro-
gen spectroscopy settle around 0.88 fm, whereas the proton radius obtained from muonic hydrogen
experiments is at 0.84±0.01 fm [108-110] and the researchers noted the real size is rather 0.84±0.01
fm, which is exactly the case (67) derived from the inner consideration of the constitution of a
nucleon described in the present work.

Beta decay of the neutron, which outside a nucleus has a lifetime of about 15 minutes, is
denoted by the radioactive decay

n0 → p+ + e− + ν̄e.

Where do the electron and the electron antineutrino come from? Nobody knows. Nevertheless,
expressions (54)-(56) clarify the process of transformation in the real space constituted as the
tessellattice. Figure 14 depicts vividly successive changes in the process of neutron transformation:
(a) the initial stable state of the neutron; (b) the separate orbital monopole gu, which is the axial
state of the quark u+, scatters by the oncoming virtual quark-antiquark pair (u+, ū−). Such
pairs can be created from the tessellattice only in the electrically charged state and never in the
monopole state; (c) the quark u+ substitutes for the monopole gu occupying the orbit of the latter
and at the same time the antiquark ū− and the monopole gu leave the nucleon as an unstable pair
of ū− and gu known as a virtual particle W−. The separating particles ū− and gu cannot exist in
the tessellattice in the inflated state. That is why the tessellattice immediately squeezes ū− and
gu to the state of local stable deformations and they become the electron e− and antineutrino ν̄e,
respectfully. In this phase transition from one topology to the other, only the particles’ volumes
change (from Fig. 3b to Fig. 3a); their surface polarizations are preserved.
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Figure 13: Structure of a nucleon. The quarks are rotated in the interior of the nucleon,
which is shown as the grey sphere having the radius r = Λ ≈ (0.83−0.86)×10−15 m. The
membrane of the bubble spreads from r = Λ to r = λ Com,nucl = h/(mp(n) c) = 1.32×10−15

m. In the membrane cells of the tessellattice are found in a stretched state and the cohesive
forces between these cells are responsible for the surface tension.
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Figure 14: Beta decay of the neutron to the stable state of the proton.
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Figure 15: Attraction of two nucleons is cause by the adhesion of their membrane films.

The present study unveils the inner nature of the nuclear forces: the attraction between mo-
tionless nucleons is caused by their adhesion. Two membranes stick together generating a sta-
ble formation shown in Fig. 15. Note in nuclear physics the radius of nuclear forces reaches
(1.2− 1.5)× 10−15 m [111], which is compatible with our result λCom, nucl = 1.32× 10−15 m. At
a distance around 0.4 fm the nuclear forces of attraction are changed to forces of repulsion [112],
which is also consistent with our result, as this is the inflection point (69) of the quark potential
(68). In motion a nucleon generates its own inerton cloud that accompanies the nucleon, as Fig. 4
exhibits. Since in nuclei the speed of a nucleon is less than the velocity of light and the energy per
nucleon is about 8 MeV, we may estimate the average nucleon’s de Broglie wavelength as about
λ ≈ 5 × 10−15 m and the nucleon’s inerton cloud, which spreads around the nucleon (see Fig.
4), reaches the distance of around Λ = λ c/υ ∼ 10−14 m. An inerton theory of the interaction
of nucleons was developed in Ref. 27. Of course perturbations should generate virtual pairs of
lepton-antilepton and/or quark-antiquarks in the vicinity of the quantum system studied. These
pairs have to disturb the Lagrangian of nucleon–nucleon interaction presented in Ref. 27.

The problem of the proton spin crisis has been discussed in the literature for years (see, e.g.
recent experimental works [113-115]). The quarks inside a proton have their own intrinsic spin. But
numerous experiments have confirmed that a directional preference among all these quark spins
can account for only about 25% of the proton’s total spin. Therefore, gluons contribute much less
than originally speculated to proton spin, so the source of the spin still remains a mystery.

Camay [116] notes that the problem would be solved if one correctly calculates angular momen-
tums of all the quarks and takes into account the quark spatial motion (which also is in agreement
with experiment [113]). Nevertheless, to resolve the problem of the proton spin, one first has to
have a correct determination of the notion of spin as such. The determination was done in works
[23, 22]: spin-1/2 is an integral property of a moving particle, which is associated with a kind
of inner pulsations/oscillations. These oscillations may have two opposite directions, which set
two opposite projections. The projections of oscillations may be related to the direction of the
particle’s electro-magnetic polarization, left or right. The electro-magnetic polarization is given by
the needles on the surface of the particle, which is described by the Maxwell equations [22]. Hence
any charged particle moves like an oscillating vortex with the left or right surface polarization (i.e.
left of right polarized electro-magnetic filed). The inerton cloud of a charged particle being electro-
magnetically polarized carries the phenomenon of the particle’s spin (the left or right oscillating
electromagnetic vortex) through the space.

In the case of the proton, probing the structure of the proton for its spin, one has to use low
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energy collisions and prolong the duration of the reaction until the proton passes its whole de
Broglie wavelength λ ≈ 5× 10−15 m.

At a higher energy (a few to hundreds of GeV) the length of its de Broglie wavelength λ falls
within its size, i.e. λ becomes less than λCom, p. In this case the experiment will probe the motion
of the proton’s entities – quarks – and the data will be specified by dispersion (a similar situation
takes place in femtosecond optics: a probing laser pulse fixes a “frozen” instantaneous state of
complete vibrations of atoms).

5. Discussion and conclusion

We have reviewed the mainstream concepts aimed at the description of elementary particles in the
high-energy domain. The majority of existing approaches are developing in the realm of abstract
phase spaces, which introduces significant difficulties in physical interpretation of their notions.
For example, color charges of quarks, which supposedly have to compensate each other at the
interaction, cannot be measured in principle. Even in the framework of QCD the concept of the
integer quark charge is working very well [52, 54], so no sense to introduce any fractional charges
that are not observed experimentally. Many discrepancies of QCD were considered by Comay [116-
118]; in particular, he [117] emphasizes that QCD has no theoretical explanation for the interaction
of a hard photon with hadrons; an old idea of vector meson dominance suggested to explain the
interaction properties of high-energy photons with hadrons is strongly criticized.

All events of high-energy physics occur in the background of an ordinary physical space, though
the major modern quantum concepts refer to this background as to a vague vacuum with unknown
and undetermined properties. An ambiguous physical vacuum really introduces a concept of god
and devil in modern science. In fact, the vacuum brings particles to existence from its dark body
and takes the particles back. As a result we already got dark matter and dark energy. Of course
such pseudo physical doctrine of the physical vacuum requires a redefining.

The physical vacuum was reconsidered in our works [16-19] in terms of a physical space. The
structure of physical space was derived from first mathematical principles by using topology, set
theory and fractal geometry. The examination immediately sheds light on the scene of all the
events of elementary particles. The theory explains what is a real particle (lepton and quark),
what are its size and shape, what is its mass, what are its properties, how it interacts with the
space that just created it, and how the particle moves satisfying all the peculiarities of quantum
mechanics [20-28]. Those studies allow us to apply the developed submicroscopic concept to the
physics of quarks, which has been done in the present work.

It has been argued that the quark represents an inflated cell in the tessellattice and around
this kernel-cell a coat is developed to compensate the inflation. Beyond the deformation coat the
space remains unperturbed. The interaction of quarks occurs through an agglutination of their
coats, which are typical bubbles filled with inflated excitations produced by standing spherical
waves generated by the quarks. A short-range interaction of bubbles easily resolves the paradox of
confinement and asymptotically freedom of quarks. We have analyzed the stability of such physical
picture, in particular, for the proton. The conclusion has been drawn that unperturbed nucleons
interact through two major channels: i) a direct coalescence of the nucleons? deformation coats
and ii) the spatial excitations generated by the nucleons at the motion through space [27]. These
excitations are inertons, which were introduced in previous papers by the author [20-28]. The
concept of inertons was proven in a number of different experiments (see, i.e. Refs. 28, 119).

From the viewpoint of the structure of the tessellattice, there are no reasons to introduce
fractional charges for quarks. The structure of quarks and hadrons presented in section 4 introduces
the integer charge for quarks ±e. The present theory focuses on a dynamic pattern: how quarks
move, what are their trajectories inside of a hadron, at which configurations the quarks enter the
hadron under consideration (i.e. the electric state or the magnetic monopole state), etc. The
quark’s cloud of inflated excitations named qinertons allows a direct connection to a gluon of
QCD. In the approach developed the quark is colorless. No sense to introduce an additional kind
of the interaction caused by some “colors”, because quarks with their qinerton clouds represent
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Figure 16: Laboratory apparatus of the Lx series produced by the company Indra Scien-
tific SA, which generates inerton fields.

real bubbles in the tessellattice and these bubbles interact with a potential proportional to r, as
described above in the present work, which binds quarks.

The isospin phenomenology can be substituted by deterministic submicroscopic dynamics of
bubbles with the quarks in the bubble’s center. Such dynamics, a kind of a hydrodynamics with
elements of submicroscopic mechanics is not developed yet. A new mathematics will be needed for
the description and understanding of these systems: tightly interacting bubbles in which kernel
particles (quarks, or partons) with qinertons (whose cloud is a gluon?) are dancing under their
own mechanics. Such studies will be able to shed light on the criterions of stability/non-stability
of hadrons.

The theory can further be tested in scattering experiments, as it allows the calculation of form
factors and the differential cross-section for elastic scatterings of the hadrons studied.

In our recent studies we revealed that inerton fields produced at rather simple laboratory
conditions are able to influence not only chemical, physical and biological processes, but also
nuclear reactions. An apparatus that generates inerton fields is illustrated in Fig. 16. Below we
state two examples of using the inerton field.

Figure 17 shows spectra of a sample of radioactively contaminated water, 300 ml, whose initial
radioactivity was about 10−5 Bq/l. After 30-second processing of the water sample with the
inerton field having the intensity of a few thousand pulses per second, the level of radioactivity
was quenched by 32%. Further treatment did not reduce the level of radioactivity of water – we
reached a saturation threshold. It seems a further quenching could be possible at a heightening of
the intensity of applied inerton field.

Cylindrical samples with the length 15 mm and the diameter 1 mm made of technical iron
were affected by inerton fields in the apparatus Lx (Fig. 15) for 30 seconds. The structure of the
control sample, which was studied with the use of a JEOL electron microscope, is shown in Table 1
and Fig. 18. The elemental composition of the sample affected by inerton fields is shown in Table
2,a, b, and c and Fig. 18, 19, 20, respectively (the elemental composition was analyzed in three
different points a, b and c of the sample).
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Figure 17: γ-spectra of a sample of radioactive water before processing of inerton field
(left) and after processing (right). The numbers of pulses of γ-quanta recorded by the
scintillator are shown in the upper right corners of the graphs.

Figure 18: Elemental composition of the iron sample (control).

31



Table 1 (See Fig. 18.)

Element Composition, % Atomic, %
C K 11.72 8.16
Mn K 0.39 0.28
Fe K 87.89 61.56

Total 100.00 %

Table 2a (See Fig. 19.)

Element Weight, % Atomic, % Composition, % Formula
C K 2.09 5.61 7.64 CO2

Ca K 0.34 0.27 0.48 CaO
Cr K 0.35 0.22 0.51 Cr2O3

Mn K 0.38 0.23 0.50 MnO
Fe K 68.63 39.70 88.30 FeO
Co K 0.56 0.30 0.71 CoO
Ni K 1.47 0.81 1.87 NiO
O 26.18 52.86

Total 100.00 %
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Table 2b (See Fig. 20.)

Element Weight, % Atomic, % Composition, % Formula
C K 3.57 9.04 13.09 CO2

Ca K 0.58 0.44 0.81 CaO
Cr K 0.40 0.24 0.59 Cr2O3

Fe K 63.04 34.31 81.10 FeO
Ni K 1.93 1.00 2.46 NiO
Cs L 0.36 0.08 0.38 Cs2O
Hf L 1.33 0.23 1.57 HfO2

O 28.78 54.67
Total 100.00 %

Table 2c (See Fig. 21.)

Element Weight, % Atomic, % Composition, % Formula
C K 3.88 9.61 14.21 CO2

Ca K 0.48 0.36 0.67 CaO
Cr K 0.34 0.20 0.50 Cr2O3

Mn K 0.20 0.11 0.26 MnO
Fe K 63.16 33.64 81.25 FeO
Ni K 2.44 1.24 3.10 NiO
Cs L 0.00 0.00 0.00 Cs2O
O 29.50 54.85

Total 100.00 %
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Figure 19: Elemental composition in the point a of the affected sample.

Figure 20: Elemental composition in the point b of the affected sample.

Literature on low energy nuclear reactions is abundant [120,121], though there is no theoretical
understanding of the phenomena. There are no solid theoretical ideas regarding methods of control
of nuclear reactions. The study presented in this paper opens a gateway to a real realization of
controlled fission and fusion reactions in which an inerton field is able to play the role of a moderator
between microscopic and subatomic processes.
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Figure 21: Elemental composition in the point c of the affected sample.
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73. J. Jäykkä, On topological solitons in the Faddeev-Skyrme model and its extensions, SARJA
- Ser. A1, OSA - Tom. 399; Astronomica-Chemica-Physica-Mathematica, Annales Univer-
sitatis Turkuensis (Turun, Yliopisto, Turku, 2009).

74. D. Gomez Dumm, A. J. Garcia and N. N. Scoccola, Non-leptonic decays of hyperons in the
Skyrme model, in International workshop on hadron physics 2000: Topics on the structure
and interaction of hadron systems (World Scientific, 2001), pp. 310-313.

75. K. Tsushima, D. O. Riska, Dilatons in the topological soliton model for the hyperons, Nucl.
Phys. A 560, no. 4, 985-996 (1993).

76. A. Vilenkin, Cosmic strings and domain walls, Phys. Rep. 121, no. 5, 263-315 (1985).

77. L. B. Okun, The concept of mass. Mass, energy, relativity, Uspekhi Fiz. Nauk 158, no. 3,
511 (1989); in Muscovian.

38



78. F. Wilczek, The origin of mass, Mod. Phys. Lett. A 21, no. 9, 701-12 (2006).

79. L. de Broglie, Les incertitudes d’Heisenberg et l’interprétation probabiliste de la méchanique
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