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ABSTRACT

The real physical space is derived from a mathematical space constructed as 
a tessellation lattice of primary balls, or a kind of superparticles. In the tessel-
lattice particles are determined as local stable deformations. The motion of 
a particle generates a cloud of excitations around the particle, which were 
named inertons. An abstract construction of quantum mechanics known as the 
wave ψ-function is treated as a mapping of the real system “particle + its cloud 
of inertons.” These inertons carry both the particle’s inert and gravitational 
properties. It is shown how inertons manifest themselves experimentally, how 
they form clusters of particles in diluted cold gases, clusters of electrons, and 
how they are responsible for the Casimir effect. The inerton field, as well as 
the electromagnetic field, is a basic field of the universe. The inerton field is 
able to give a deeper insight into the fundamental nature of things playing an 
important role in quantum physics, chemical physics, biochemistry, biophys-
ics, and condensed matter in general.

2.1 INTRODUCTION

Nanosystems approaching the fundamental microscopic length scales have 
demonstrated fundamentally new physical phenomena. New advances have 
been reached in many basic and enchanced areas of nanophysics, including 
diluted cold gases, carbon nanotubes, graphene, magnetic nanostructures, 
composite nanoparticles, transport through coupled quantum dots, spin-de-
pendent electron transport phenomena, optical matrices with doped nanopar-
ticles, molecular electronics and quantum information processing.

Usually new phenomena relating to nanosystems are associated with 
changes in electric and magnetic behavior of the systems studied in which 
electrical/magnetic polarizations are locally realized bringing new physical 
chemical properties, which can be applied to the electronics industry. Re-
search of nanosystems is challenging as it enters the uncharted areas delimited 
by new nanoelectronic devices and fabrics. Such devices allow us to increase 
computational density up to 100 times, which extremely amplifi es the capabil-
ities of such systems in new areas of application and markets. New dynamic 
properties revealed in nanosystems enable the possibilities of nano-engines, 
nano-pumps and nano-propellors with advantages in distinctive sensors, bio-
medicine and energy savings and in sustainable development in general.

At the same time, in some peculiar situations some nanosystems unveil 
such new properties that they cannot be directly accounted for by conven-
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tional electromagnetism and quantum mechanical laws. To such systems with 
special properties, in which peculiar quantum fl uctuations are realized, belong 
those that manifest the so-called Casimir effect [1–4], an attractively interact-
ing ensemble of ultracold bosons at negative temperature that is stable against 
collapse for arbitrary atom numbers [5]; an electron droplet (an aggregation 
of about 1010 electrons in one cluster) [6–12].

In this chapter, the submicroscopic deterministic concept is revealed in 
detail and its connection to the conventional quantum mechanical formalism 
is demonstrated. In the next sections unusual effects uncovered in nano- and 
submicroscopic systems ensue from the submicroscopic standpoint, namely, 
the effects incorporating quasi-particles named inertons, carriers of the iner-
ton fi eld, which, as is shown is a basic physical fi eld of Nature.

2.2 SUBMICROSCOPIC DETERMINISTIC CONCEPT

A sub microscopic approach can be considered as the further development of 
conventional quantum mechanics, which incorporates the theory of ordinary 
physical space.

2.2.1 PHYSICAL SPACE

The term space is used somewhat differently in different fields of study. In 
physics space is defined via measurement and the standard space interval, 
called a standard meter or simply meter, is defined as the distance traveled by 
light in a vacuum per a specific period of time and in this determination the 
velocity of light is treated as constant. In microscopic physics, or quantum 
physics, the notion of space is associated with an “arena of actions” in which 
physical processes and phenomena take place. And this arena of actions we 
feel subjectively as a “receptacle for subjects.” The measurement of physical 
space has long been important.

This “arena of actions” can be completely formalized, because fundamen-
tal physical notions (particle, mass, wave ψ-function, etc.) and interactions 
can be derived from pure mathematical constructions.

It is interesting to read Vernadsky’s work who back in 1920–1930s intro-
duced the notion of noosphera (from Greek nous—mind and sphaira—ball): 
a sphere of the arena of interaction between people and nature. In particular, 
he mentioned that Helmholtz probably was the fi rst who noted that geomet-
ric space did not embrace all of empirically studied space, which Helmholtz 
called physical space; Helmholtz distinguished physical space from geomet-
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ric space, as possessing its own properties, such as right-handedness and left-
handedness; besides, Poincaré observed that geometry could not have been 
developed without solids [13]. Further Vernadsky notes: “In discussing the 
state of space, I will be dealing with the state of empirical or physical space, 
which has only in part been assimilated by geometry. Grasping it geometri-
cally is a task for the future.” Vernadsky introduced such notion as the state of 
space, which in his opinion has to be closely connected with the concept of a 
physical fi eld, which plays such an important role in contemporary theoretical 
physics.

Researchers working in the realm of quantum gravity tend to believe that 
the real space has a cellular structure at the Planck scale. For instance, in the 
case of loop quantum gravity, basic excitations of the gravitational fi eld are 
arbitrary and they can describe the quantum spacetime directly at the Planck 
scale, where the geometry comes by “quanta.”

Models of a spin-network in quantum gravity are realized as a one-dimen-
sional graph; spin foams generalize spin networks where instead of a graph 
one uses a higher-dimensional complex. Such geometry of spacetime corre-
sponds to a kind of a lattice [14]. A “Planck-Lattice,” a spacetime cubic lattice 
with the lattice constant equals to the Planck length 35

P 10−≅  m models a 
ground state of quantum gravity of Wheeler’s spacetime foam [15].

Granular space and the problem of large numbers – how many spatial cells 
may a canonical particle include – have recently been discussed in a simple 
way [16]. Wilczek says about space the following [17]: “…this is the efferves-
cent Grid… Matter is not what it used to be. It consists of small, more-or-less 
stable patterns of disturbance in the Grid… Usually the metric fi eld is taken to 
be fundamental, but in many ways it resembles a condensate, and that view of 
it may become important… What we ordinarily call matter consists of more-
or-less stable patterns of excitation in the Grid, which is more fundamental. At 
least, that’s how things look today.”

All this means that physical space is a peculiar substrate that is subject to 
certain laws, which as has been seen below, are purely mathematical. Such a 
view allows us to completely remove any subjectivity and all the fi gurants of 
fundamental physical processes will be 100% defi ned. So, we can elucidate 
those something’s that form a primordial physical substrate and determinate 
its mathematical properties.

Modern quantum theories wish to combine all fundamental interactions 
in a unifi ed theory—the theory of everything. However, doing so the theory 
of everything rests on complete undetermined basic notions, such as mass, 
particle, charge, lepton, quark, Compton wavelength, de Broglie wavelength, 
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particle-wave, spin, etc. Moreover, the notion of space in which all physical 
processes occur is also beyond understanding, though the review above illus-
trates a gradual trend of the researchers to a fi ne-scale morphology that has to 
incorporate particles.

How can the situation be clarifi ed? Can we start from the theorem of some-
thing? Then, having defi ned basic physics notions, we will be able to pass on 
to the construction of the theory of everything.

Bearing in mind an idea to build fundamental physics based on math-
ematical space, we fi rst of all have to answer the question: What is space from 
the mathematical point of view? Basing on classical mathematics we may 
start from nothing – a fl at space that does not manifest itself. How does real 
physical space appear? The fl atness of the original mathematical space points 
to the fact that the Poisson brackets and any other forms of noncommutative 
features should be absent in such a space. In particular, the Heisenberg’s un-
certainty principle also becomes an alien for the ordinary fl at space. This is 
what tells us the fundamental mathematics…

Mathematical space, as dealing with the notions of measure, distances and 
dimensionality in a broad topological sense was analyzed and constructed by 
Michel Bounias [18]. The major results of this work (for the case of totally 
topologically ordered space) are as follows.

The Jordan and Lebesgue measures involve respective mappings (I) and 
(M) on spaces which must be provided with operations ∪∩,  and C. In spaces 
of the Rn type, tessellation by balls is involved, which again demands a dis-
tance to be available for the measure of diameters of intervals. Thus, since the 
intervals can be replaced by topological balls, the evaluation of their diameter 
still needs an appropriate general defi nition of a distance. A space E is ordered 
if any segment owns an infi num and a supremum. Therefore, a distance d be-
tween A and B is represented by the relation

 (A, B) dist(inf A, inf B) dist(supA, sup B)d ⊆ ∩   (1)

with the distance evaluated through either classical forms or even the set-
distance . Any topological space is metrizable as provided with the set-
distance  as a natural metrics. All topological spaces are kinds of metric 
spaces called “delta-metric spaces.” Distance  is a kind of an intrinsic 
case (A,B) (A, B)⎡ ⎤Λ⎣ ⎦  of E (A, B)Λ  while the latter is called a “separating dis-
tance.” The separating distance also stands for a topological metrics. Hence, 
if a physical space is a topological space, it will always be measurable.
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A fundamental segment (A, B) and intervals L i = [Ai,  A( i+1)] allow one to de-
termine similarity coeffi cients for each interval by ρi = dist(Ai; A( i+1)) = dist(A, B).

The similarity exponent of Bouligand (e) is such that for a generator with 
n parts:

 
e

[1, ]

( ) 1i
i n

ρ
∈

=∑   (2)

Then, when ‘e’ is an integer, it reflects a topological dimension

 e Log /Log n ρ≈ ,  (3)

which means that a fundamental space E can be tessellated with an entire 
number of identical balls B exhibiting a similarity with E, upon coefficient r.

The measure of the size of tessellating balls as well as that of tessellat-
ed space, with reference to the calculation of their dimension is determined 
through Eqs. (2) and (3). A space may be composed of members, such that not 
all tessellating balls have identical diameter. Also a ball with two members 
would have a more complicated diameter. Thus a measure should be used as a 
probe for the evaluation of the coeffi cient of size ratio needed for the calcula-
tion of a dimension [18].

It is generally assumed [19] that some set does exist. This strong postulate 
was reduced to the axiom of the existence of the empty set [18]. Supplement-
ing the empty set (Ø) with some operations and rules allowed us to construct 
a magma, which became an initiating polygon for a spatial lattice.

Recall that in abstract algebra a magma is defi ned as a set M supplied with 
a single binary operation interpreted and described usually (but not always) as 
a form of multiplication “⋅” and this binary operation is closed by defi nition. 
So, a magma is a set S in which the operation “⋅” forwards any two elements 
a, b to another element a.b. To qualify as a magma, the set and operation 
(M, .) must satisfy the magma axiom: For all a, b in M, the result of the opera-
tion a.b is also in M.

So, following ordinary algebraic canons, we [18] in fact could show that 
providing the empty set (Ø) with operations (∈, ⊂) as the combination rules 
with the property of complementarity (C) results in the defi nition of a magma 
without violating the axiom of foundation if the empty set is seen as a hyperset 
that is a nonwellfounded set. The magma was defi ned as { },∅∅ = ∅ C  and it 
was proved that such construction with the empty hyperset and the axiom of 
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availability is a fractal lattice an these features indeed characterize a fractal 
object [20].

Writing ∅∅  denotes that the magma refl ects the set of all self-mappings of 
(∅ ), which emphasizes the forthcoming results. The space constructed with 
the empty set cells is a Boolean lattice ( )∅S  and this lattice is provided with 
a topology of discrete space. The magma of empty hyperset is endowed with 
self-similar ratios.

Such a lattice of tessellation balls was called a tessel-lattice [18, 21]. The 
magma of empty hyperset is a fractal tessel-lattice.

An abstract tessel-lattice of empty set cells accounts for a primary substrate 
in a physical space [21, 22]. Space-time is represented by ordered sequences 
of topologically closed Poincaré sections of this primary space. These map-
pings are constrained to provide homeomorphic structures serving as frames 
of reference in order to account for the successive positions of any objects 
present in the system. Mappings from one to the next section involve mor-
phisms of the general structures, standing for a continuous reference frame, 
and morphisms of objects present in the various parts of this structure. The 
combination of these morphisms provides space-time with the features of a 
nonlinear generalized convolution (and then the process of motion appears as 
a stack of serial slices, that is, Poincaré sections, which resembles a custom-
ary movie). Discrete properties of the lattice allow the prediction of scales at 
which microscopic to cosmic structures should occur.

The fundamental metrics of space-time is represented by a convolution 
product where the embedding part D4 is described by the following relation:

 
S

D4 ( )* ( )
d

d d d d w
⎛ ⎞

= ⋅ ⋅ Ψ⎜ ⎟
⎜ ⎟⎝ ⎠

∫ ∫ x y z   (4)

where dS is an element of space-time, and ( )d wΨ  a function accounting for the 
extension of 3D coordinates up to the 4th dimension timeless space through 
convolution (*) with the volume of space. Thus fractality of space manifests 
itself through changes in the dimension of geometrical structures. For exam-
ple, the dimension of a curve exceeds 1D and falls in the interval between 1D 
and 2D; for a volumetric object the dimension may lay between 3D and 4D.

Thus the real physical space is organized as the tessel-lattice of primary 
topological balls. The existence of such lattice stands for the universe sub-
strate (or “space”). In a degenerate state the size of a ball, which plays the role 
of a lattice’s cell, is associated with the Planck length  P. Deformations of 
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primary cells by exchange of empty set cells allow a cell to be mapped into an 
image cell in the next section as far as mapped cells remain homeomorphic.

The tessel-lattice is specifi ed with quanta of distances and quanta of frac-
tality [21, 22]. The sequence of mappings of one into another structure of 
reference (e.g., elementary cells) represents an oscillation of any cell volume 
along the arrow of physical time.

A lattice that includes a set with neither members nor parts accounts for 
both relativistic space and quantic void, since: (i) the concept of distance and 
the concept of time have been defi ned on it, and (ii) this space holds for a 
quantum void since on the one hand it provides a discrete topology with quan-
tum scales, and on the other hand it contains no “solid” object that would 
stand for a given provision of physical matter.

When a fractal transformation is involved in exchange of deformations 
between cells, there occurs a change in the dimension of the cell and the ho-
meomorphism is not conserved [21]. Then the fractal kernel (a local deforma-
tion of the tessel-lattice) stands for a “particle” and the reduction of its volume 
is compensated by morphic changes of a fi nite number of surrounding cells. 
These morphic changes represent a typical tension of the tessel-lattice around 
the deformed fractal kernel, that is, particle.

Since we have introduced a particle, we must provide it with physical 
properties. First of all this is mass: The mass mA of a particulate ball A is a 
function of the fractal-related decrease of the volume of the ball:

 
fract

deg. cell part
fract e 1( / ) (e 1)Am V V >∝ ⋅ −   (5)

where V deg. cell is the typical average volume of a cell in the tessel-lattice in the 
degenerate state; V part  is the volume of the kernel cell of the particle; (e) is 
the Bouligand exponent, and (efract 1) the gain in dimensionality given by the 
fractal iteration. Just a volume decrease is not sufficient for providing a ball 
with mass, since a dimensional increase is a necessary condition (there should 
be a change in volumetric fractality of the ball) [21, 22].

As follows from Eq. (5), mass appears as a deformation of a cell, that is, 
at the volumetric fractal contraction of the cell. This is typical for leptons 
and hence in the case of leptons V deg. cell /V lepton >1 (the volume of the particle 
kernel is less than the volume of the original degenerate cell). In the case of 
quarks the situation is reciprocal: the quark’s kernel cell has a volume bigger 
than the average volume of a degenerate cell, that is, V quark /V deg. cell >1 [22].

Therefore, in the tessel-lattice a lepton is a contracted kernel-cell. Sur-
rounding cells compensate this local deformation by morphic changes (a cell 
tension) forming a peculiar deformation coat with a radius identifi ed with 
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the particle’s Compton wavelength Com / ( )h mcλ = . Beyond the radius Comλ  
there is no information about the particle. This hidden radius indeed manifests 
itself in the experiments on light scattering by particles, though in orthodox 
quantum mechanics the size of a canonical particle does not play a part in the 
theory.

In condensed matter physics the availability of a deformation coat is a 
typical situation. It emerges in a crystal lattice when a foreign particle or iso-
tope defect arises in the solid (for example, small and big polarons); a similar 
situation occurs in a liquid (a solvate shell forms around an entered ion) and 
liquid crystal.

2.2.2 MECHANICS OF THE TESSEL-LATTICE

A local stable deformation in the tessel-lattice, that is, a volumetric fractal 
deformation of a cell of the tessel-lattice, can be treated as a massive particle. 
The motion of such particle occurs with the interaction with surrounding cells 
(Fig. 2.1). This situation is fundamentally different from what we have in 
Newtonian mechanics – because in the latter the particle moves without inter-
acting with space.

FIGURE 2.1 Motion of the local stable deformation in the tessel-lattice.
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Motion of a particle in the tessel-lattice is accompanied by friction, which 
is obvious. The particle contacting oncoming cells of the tessel-lattice emits 
excitations, which fi nally has to stop the particle, as it loses energy. However, 
if these excitations are reabsorbed by the particle, it will continue to move 
ahead. No energy is lost in this interaction, that is, all excitations are reab-
sorbed by the particle and no friction heat is generated. Thus we may assume 
that a particle in the tessel-lattice moves rectilinearly in such a way that its 
velocity oscillates between the initial value υ0 and zero, that is, during odd 
half a period the particle emits excitations and gradually loses the velocity and 
during the next even half a period it absorbs the emitted excitations gaining 
speed, and so on. These spatial excitations were named inertons [23, 24] since 
they refl ect the inert properties of matter – a resistance on the side of space to 
a stimulation of the movement of the object. The principle of motion is shown 
in Fig. 2.2.

FIGURE 2.2 Motion of the particle in the tessel-lattice, which is accompanied with the 
emission of inertons. The moving particle periodically emits inertons in the odd part of its 
spatial period (in the section [0, λ/2], (a); and absorbs them in the second part of the spatial 
period (in the section [λ/2, λ], (b).

It is interesting that such a pattern of the motion embraces ideas of 
Poincarè and de Broglie on the principles of motion of canonical particles. 
Indeed, [25] pointed out that an electron is a singularity in the world ether 
and it should move surrounded by the ether excitations. De Broglie [26] in-
stinctively put those excitations in order, such that the excitations became 
a wave guiding the particle (one can see this in Fig. 2.2b). However, in 
1927 at the Fifth Solvay International Conference he was persuaded to the 
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probabilistic interpretation of quantum mechanics, which was suggested 
by Born in 1926 [27, 28]. Nevertheless, later on since 1952 [29]) was 
fi rmly searching for the double solution theory, which would be able to 
reinterpret the wave ψ-function so that it showed its physical interpretation 
rather than probabilistic discoloration.

The behavior of a particle in the tessel-lattice can be described by the fol-
lowing Lagrangian [23, 24, 30].

{ }1/22 2 2 2
0 0 0 0 0 0 01 1/ ( ) 2 / ( )L m c m c m x T m xμ χ π μ χ υ χ⎡ ⎤= − − + − −⎣ ⎦   (6)

where m0 is the particle’s mass, x is its position; μ0 is the mass of the excited 
cloud of inertons (excitations of the tessel-lattice associated with the field of 
inertia of the particle), χ is the position of the center mass of the cloud; 1/T is 
the frequency of collisions of the particle with the cloud of inertons; υ0 is the 
initial velocity of the particle and c is the speed of light. This Lagrangian is 
constructed as an inner development of the so-called relativistic Lagrangian 
of a particle 2 2 2

0 01 /L m c cυ= − − .
The moving particle is rubbing against the tessel-lattice, which results in 

the appearance of the particle’s cloud of inertons. But this is not a classic fric-
tion that stops the particle. Indeed, the Euler-Lagrange equations

 / ( / ) / 0d dt L q L q∂ ∂ ∂ ∂− =

for the particle ( q x≡ ) and its inerton cloud ( q χ≡ ), which are based on the 
Lagrangian equation (the Eq. (6)), result in:

 
2

0
2 0d x d x

T c dtdt
υπ

+ = ,  (7)

 
2

02
0

0d c d
T dtdt

χ π χ υ
υ

⎛ ⎞− − =⎜ ⎟⎝ ⎠
.  (8)

The corresponding solutions to Eqs. (7) and (8) for the particle and the inerton 
cloud are:

 ( )0 1 | sin( / ) |x t Tυ π= ⋅ −   (9)

 ( ){ }[ / ]
0 / ( 1) cos( / ) 1 2[ / ]t Tx t t T t Tυ λ π π= + ⋅ − − + ,  (10)
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 / | sin( / ) |t Tχ π π= Λ ⋅ ,  (11)

 [ / ]( 1) cos( / )t T c t Tχ π= −  (12)

 0 ,T cTλ υ= Λ =  (13)

The Eqs. (9) and (10) show that the particle’s velocity periodically oscillates 
and λ is the amplitude of the particle’s oscillations along its path. In particular, 
λ is the period of oscillation of the particle’s velocity that changes between 
υ0 and zero. An oscillation of the particle’s velocity is a very interesting fea-
ture of the tessel-lattice’s mechanics (Fig. 2.3). The inerton cloud periodically 
leaves the particle and then comes back; Λ is the amplitude of oscillations of 
the cloud and c is the velocity of the cloud of inertons.

FIGURE 2.3 This is the graphical presentation of the solution (the Eq. (9)) for the 
behavior of the particle’s velocity x as a function of time t. The time interval T of collisions 
of the particle with its inerton cloud plays the role of the period of the particle’s velocity 
oscillations.

The Lagrangian (6) allows us to introduce an effective Hamiltonian of the 
particle, which describes its behavior relative to the center of inertia of the 
particle-inerton cloud system,

 [ ]22 2
eff / (2 ) 2 / (2 ) / 2H p m m T Xπ= +   (14)

where 2 2
0 0/ 1 /m m cυ= − . This is the harmonic oscillator Hamiltonian, which 

means that we can construct the Hamilton-Jacobi equation for a shortened ac-
tion S1 of the particle,

 [ ]22 2
1( / ) / (2 ) 2 / (2 ) / 2S x m m T X E∂ ∂ π+ =   (15)
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where E is the energy of the moving particle. Introduction of the action-angle 
variables leads to the following increment of the particle action within the 
cyclic period 2T, 

 1 2S p d x E TΔ = = ⋅∫   (16)

The Eq. (16) can be rewritten by using the frequency v = 1/(2T). At the same 
time 1/T is the frequency of collisions of the particle with its inertons cloud. 
Allowance for 2

0 / 2E mυ=  gets,

 1 0 0 0S m T pυ υ λΔ = ⋅ =   (17)

where 0 0p mυ=  is the particle’s initial momentum. If we equate the increment 
of action ΔS1 per period to Planck’s constant h, we obtain instead of Eqs. (16) 
and (17) the major de Broglie’s relationships 

 , /E h h pν λ= = ,  (18)

which form the basis of conventional quantum mechanics.
The Eq. (18) allow one to derive the Schrödinger equation [31] 

 
2

2 ( , ) ( ) ( , ) ( , )
2

r t V r r t E r t
m

ψ ψ ψ− ∇ + =
 .  (19)

The submicroscopic concept developed in the real space constructed as the 
tessel-lattice with the size of a cell equal to the Planck length operates with a 
particle and the particle’s cloud of inertons. Conventional quantum mechan-
ics, which was evolved in an abstract phase space on an atom scale, works 
with the wave ψ-function. These two approaches can be combined, as the 
inerton cloud of an entity, which is associated with the entity’s field of inertia, 
is mapped into an abstract phase space of ordinary quantum mechanics in the 
form of a “mysterious” wave ψ-function (Fig. 2.4).
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FIGURE 2.4 Moving particle with the velocity , which is surrounded by its cloud of 
inertons. An approximate size of such complicated system {particle + its inerton cloud} is 
determined by the cloud’s amplitude Λ and the de Broglie wavelength λ. This complicated 
system determined in the real space is mapped to conventional quantum mechanics 
constructed in an abstract phase space as the particle’s wave ψ-function.

Therefore, in the framework of the submicroscopic concept the cloud’s 
inertons are a substructure of the matter waves. Inertons are fi eld carriers – 
carriers of the fi eld of inertia of the particle. They transfer mass and fractal 
properties from the particle to distant points of space. Why inertons emitted 
by a moving particle comes back to it? This is because the tessel-lattice is a 
reverberating substrate. (Of course these inertons may interference with other 
inertons and partly be absorbed by other objects, which correlate the behavior 
of the particle in question. This allows for entanglement.)

A range of space covered by the particle’s inertons (i.e., particle’s wave 
ψ-function) is specifi ed by the amplitude of the inerton cloud, 

 0/cλ υΛ = ,  (20)

which is spread in transversal directions from the particle’s path; the particle’s 
de Broglie wavelength λ is a section of the particle’s path, the particle’s ampli-
tude; υ0 is the initial velocity of the particle, and also the component of the ve-
locity of the inerton cloud along the particle’s path; c is the speed of light that 
is the velocity component of migrating inertons in the inerton cloud, which 
migrate transversal to the particle’s path. If the particle is motionless, its 
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inertia and gravitation are restricted in the particle’s deformation coat whose 
radius coincides with the particle’s Compton wavelength Com / ( )h mcλ =  
where m is the particle’s mass.

In a macroscopic object (which is embedded in the tessel-lattice) local 
oscillations of entities generate inerton clouds that overlap, producing a set of 
harmonics of inerton waves [32, 33]. Moreover, long-wave inerton harmonics 
go far beyond the physical size of the object. These oscillating waves bear 
mass properties to a great distance away from the object. Oscillating waves 
mean that inertons emitted by the object return to it, which signifi es that these 
inerton waves are standing spherical waves.

Solutions to standing spherical waves are characterized by the inverse 
dependence on the distance to the wave’s front. The standing inerton wave 
results in a quasi-stationary mass potential fi eld around the object with a mass 
M0, which is subjected to spherical symmetry.

 0~ /M M r  (21)

This average mass field automatically results in the Newton’s gravitational 
potential [34]

 0 /U GM r= −  (22)

Besides, the notion of a point mass, which is typical for general relativity, can-
not be a real point but rather a small macroscopic object whose smallest radius 
can be estimated at around 1 μm.

The submicroscopic theory has been further developed for the interaction 
of massive objects. It was exhibited that the gravitational interaction between 
two objects should be described by a corrected Newton’s law [35].

 
2
tan0 1
21

rM M
U G

r c

⎛ ⎞
= − ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠


 (23)

where ˙ r tan  is the tangential velocity of a test mass M1, which is in line with 
Poincaré’s remark that an expression for the gravitational interaction should 
include the velocity of a moving object [25]. By using Eq. (23), the submicro-
scopic approach has successfully been applied to describe four macroscopic 
phenomena, which are treated as four classical tests for general relativity; 
they are: the motion of Mercury’s perihelion, bending of a light ray by a star, 
the red shift of spectral lines [35, 32], and the Shapiro time delay effect [36].

Finally in this section, we mention that the submicroscopic approach al-
lowed us to resolve successfully the big cosmological problem related to 
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so-called dark matter [37]. Standing inerton waves oscillate around the mas-
sive objects with the speed of light. They are those waves that induce the 
gravitational attraction between objects. In addition an overlapping of these 
standing oscillating inerton waves generates an elastic interaction between 
masses bringing them to a formation of clusters in which masses are charac-
terized by both the Newtonian and elastic interaction. It is this elastic interac-
tion that so far eluded researchers has been associated with the manifestation 
of dark matter.

The tessel-lattice also enables naturally the introduction of electric and 
magnetic charges and electromagnetic fi eld [32, 38]

2.3 THE SUBMICROSCOPIC BEHAVIOR OF PARTICLES IN 
CONDENSED MATTER

The submicroscopic approach allows us to shed new light upon a number of 
well-known phenomena in condensed matter. This approach makes it possible 
to investigate how the quantum mechanical field (a substructure of the matter 
waves, that is, inertons, carriers of the particles’ field of inertia) determines 
the collective behavior of atoms. In submicroscopic mechanics, the momen-
tum p of a particle is decomposed to the mass m and the velocity υ and each of 
these parameters is characterized by its own behavior in the line of a particle’s 
path. The whole particle path is subdivided by the particle’s de Broglie wave-
length λ. Along the section λ the particle velocity changes from υ to zero and 
is then again reinstated to υ, i.e.  Owing to the emission and 
re-absorption of inertons by the particle, its mass also varies, 
…, but of course m does not disappear: the particle’s mass state m is peri-
odically passed to a local tension Ξ that is induced on the particulate cell: 

 (the tension is a displacement of the volumetric fractal defor-
mation from its equilibrium state, periodically changing to a local tension of 
space). There is nothing extraordinary in such a behavior. An electric charge 
( e) moves in the same way along its path, which periodically is transformed 
to the magnetic monopole (g) state:  [32, 38].

Thus, the core of a moving particle is accompanied by a cloud of the par-
ticle’s inertons ejected from the particle on its collisions with oncoming cells 
of the space tessel-lattice. In condensed media, atoms/molecules vibrate near 
their equilibrium positions. The crystal lattice is a good model to reveal major 
regularities in mass dynamics of condensed matter in general (a solid, liquid 
or gas) and that is why this model has been used to study the behavior of the 
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mass of atoms in the crystal lattice. In the crystal lattice the behavior of nodes 
is defi ned by the Lagrangian equation,

 ( )2 21
vibr. 2L m r rδ γ δ= −∑ n n

n

   (24)

where mn is the mass of the nth node, rδ n  is the deviation of this node from 
its equilibrium position and γ is the force constant. It is well known that based 
on the Lagrangian equation (the Eq. (24)), the Euler-Lagrange equations can 
be constructed, which completely determine the dynamics of the nodes.

Since massive nodes vibrate near their equilibrium positions, that is, are in 
motion, they emit and reabsorb clouds of inertons. Therefore inertons periodi-
cally remove a part of the mass from vibrating nodes and subsequently bring 
it back. Such behavior can be described in terms of the Lagrangian equation 
(the Eq. (25)) (for simplicity of consideration we consider an one-dimensional 
lattice), which is similar in form to the Eq. (24) but is different in dimension, 
as its variables are masses [33].

 ( ){ }1 1
mass 2 22TL m m mπ μ μ μ+= − + +∑ 2 2

n n n n g n n
n

    (25)

where mn and μn are variations of mass of nth node and its cloud of inertons, 
respectively, which occur due to the overlapping of inerton clouds of neigh-
boring nodes; g is the lattice vector; T  is the period of collision of the mass 
located in the nth node with its inerton cloud. The dot over mass means the 
derivative in respect to the time t treated as a natural parameter.

Instead of variables mn and μn we may pass on to collective variables Φk 
and φk  by rules

 1 1,i i
N N

m e eμ ϕ= Φ =∑ ∑k g k g
n k n k

k k
  (26)

Substituting Eq. (26) into Eq. (25), we obtain:

 ( ){ }1 1
mass 22 1 cosN TL π ϕ ϕ ϕ− − −= Φ Φ − + Φ +∑ 1

k k k k k k2
k

kg     .  (27)

The Euler-Lagrange equations for the variables Φk and φk  become

 ( ) 0kω ϕ−Φ − =k k
    (28)

 ( ) 0kϕ ω+ Φ =k k
   (29)
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where we designate ( )2( ) 1 cos( )Tk πω = + kg .

Periodical solutions to Eqs. (28) and (29), which satisfy the physical char-
acteristics of the system of varying masses, can be chosen as follows:

 ( )0 1 cos ( )k tωΦ = Φ + Φk ,  (30)

 ( )1 cos ( ) tφ ω= −Φk k  (31)

where parameters Φ0 and Φ1 are proportional to the rest mass of the system’s 
particles and the mass of their inerton clouds, respectively, and inversely pro-
portional to the square root of the total number of particles 1/2N − . The men-
tioned arguments point out that the variables Φk and φk represent collective 
massive excitations in the lattice: Φk describes collective mass excitations of 
the nodes of the lattice; φk characterizes the mass field of inertons that fill the 
entire space between the nodes in the lattice, like dust.

It should be emphasized that these mass excitations are completely inde-
pendent from the phonons of the lattice, because phonons are associated with 
collective changes of positions of nodes (atoms). Mass excitations described 
by the variable Φk represent the collective mass state of nodes at the moment 
t and the variable φk depicts the collective state of the total inerton cloud of 
the lattice.

The amplitude mδ  of oscillations of the nth node’s mass can crudely be 
estimated as a ratio of the dispersion of the nth node’s inerton cloud at the 
maximal distant object ( r = Λ ) and the nearest node ( r = g).

 4~ 10gm m mδ −≈
Λn n  (32)

where Λ  is the amplitude of the inerton cloud of the nth node. In accordance 
with Eq. (24), the mentioned amplitude is related to the node’s de Broglie 
wavelength, rλ δ≡n n , the node’s velocity υ (sound velocity, as the node par-
ticipates in acoustic vibrations) and the inerton velocity in the lattice can be 
equal to the velocity of light c; then

 5 410 ~ 10cr r gδ δ
υ

Λ = ≥ ⋅n n n . (33)

Thus, we can see that in a solid we have an additional physical field, which 
is the inerton field that so far has not been practically taken into account. In 
fact, vibrations of atoms result in a series of acoustic waves. But the space 
between atoms is filled with inertons, which appear owing to the interaction 
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of vibrating atoms with the space organized as the tessel-lattice. Overlapping 
of inerton clouds and the mobility of atoms, which is the source of these iner-
tons, bring about the formation of inertons waves (with their own harmonics) 
in the solid as well.

2.4 CLUSTERIZATION OF ATOMS/MOLECULES

[39] studied the behavior of a system of particles with a different character of 
interaction. The approach makes it possible to describe systems of interact-
ing particles by statistical methods taking into account their nonhomogeneous 
spatial distribution, that is, cluster formation. For these clusters are evaluated: 
their size, the number of particles in a cluster, and the temperature of phase 
transition to the cluster state. The approach developed is very suitable for 
examination of nanosystems, it allows one to study pair interaction potentials 
between molecules forming a nanoparticle and also the interaction between 
nanoparticles. Among these interactions the inerton interaction is also is pres-
ent, which brings quite new and sometimes unexpected properties to the sys-
tems studied.

2.4.1 FORMALISM OF CLUSTER FORMATION

We may start from the construction of the Hamiltonian for a system of inter-
acting particles. The energy for such a system can be written in the general 
form [40],

 rep.att.1 1
0 2 2

, ,

( ) ( ) ( ) ( )H H V c c V c c′ ′
′ ′

= − +′ ′∑ ∑rr rr
r r r r

r r r r . (34)

Particles occupy knots in Ising’s lattice described by the radius vectors r 
and r , and the filling number for the ith knot c i(r) = {0, 1}. If the potentials 
Vr  r 

att., Vr  r 
rep. > 0, the second term (comprising Vr  r 

att.) in the right-hand side of the 
Hamiltonian (34) corresponds to the effective attraction and the third term 
(comprising Vr  r 

rep.) conforms to the effective repulsion. This allows us to rep-
resent the Hamiltonian (34) in the form typical for the model of ordered par-
ticles, which is characterized by a certain nonzero order parameter,

 
rep.att.1 1

2 2
, ,

( ) .s s s s s s s ss s
s s s s s

H n E n V n n V n n′ ′ ′′
′ ′

= − +∑ ∑ ∑  (35)
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Here E s is the additive part of the particle energy (the kinetic energy) in the 
sth state. So, we have two terms for particle/molecular potential: the attraction 
and the repulsion components. So, in the Hamiltonian (35) the potential Vs  s 

att. 
represents the paired energy of attraction and the potential Vs  s 

rep. is the paired 
energy of repulsion. The potentials take into account the effective paired in-
teraction between particles/molecules located in states s and s′. The filling 
numbers n s  can run only two values: 1 (the sth knot is occupied) or 0 (the 
sth knot is not occupied). The signs before positive functions Vs  s 

att. and Vs  s 
rep. in 

the Hamiltonian (35) directly specify proper signs of attraction (minus) and 
repulsion (plus).

The statistical sum of the system of interacting particles,

 ( )B
{ }

exp ( ) /
n

Z H n k= − Θ∑   (36)

can be rewritten via the action ˜ S , which depends on three functions, 

 1Re exp ( , , )
2

Z D D d z S z
i

ϕ ψ ϕ ψ
π

⎡ ⎤= ⎣ ⎦∫ ∫ ∫  .  (37)

The complicated function ( , , )S zφ ψ  was evaluated for extremum [39]. The 
most stable solution appears when all particles are distributed by clusters, es-
pecially if each cluster includes the same number of particles. In this case the 
action for a cluster of N quantum particles becomes

 21
2 { ( ) ( )}S a N b N N≈ − ⋅  (38)

where the functions a and b are defined as follows:

 
1/3

rep. 2
B

1

3 ( ) / ( ),
N

a V g x x dx k= Θ∫   (39)

 

1/3

att. 2
B

1

3 ( ) / ( )
N

b V g x x dx k= Θ∫   (40)

where g is the lattice constant.
Having known the explicit form of the action (38), one can derive the 

equation for the number of particles combined in a cluster: / 0S N∂ ∂ = , which 
in addition requires holding of the inequality 

in cluster

2 2/ | 0N NS N =∂ ∂ > .
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The formalism described by Eqs. (38)–(40) can be applied to many dif-
ferent physical systems in which particles exhibit interaction. In particular, 
we described the behavior of electrons on a liquid helium surface; particles 
interacting by the shielding Coulomb potential, which are found under the 
infl uence of an elastic fi eld; and gravitating masses with the Hubble expan-
sion [39].

The formalism Eqs. (38)–(40) was used at studies of several other physical 
systems, which directly relate to the subject of the present paper.

2.4.2 “FROZEN” MOLECULES

The formalism proposed by Krasnoholovets and Lev [39] allows one to exam 
a possible cluster formation in a gas, liquid or solid. For the clusterization one 
needs two pair potentials that consist of a short-range repulsion and a longer-
range attraction (or vice versa). In particular, for molecular systems these are 
potentials of Morse, Lennard-Jones and Buckingham (see, for example, Ref. 
[41]), which respectively look as follows:

 ( )0 02 ( ) ( )
0( ) 2r r r rV r D e eα α− − − −= ⋅ − , 

 
12 6

6( ) 4 , ( ) r BV r V r Ae
r r r

ασ σε −
⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

.  (41)

However, following the general scheme presented in Eqs. (37)–(40), we re-
veal that for these three potentials the equation / 0S N∂ ∂ =  does not have a 
solution in which N >> 1. In other words, it seems no clusters can be formed 
in molecular systems.

Notwithstanding this circumstance, the submicroscopic concept allows 
one to investigate how clusters arise in molecular systems. The problem of 
cluster formation is solved if we take into consideration vibrations of atoms/
molecules near their equilibrium positions. In fact an entity in condensed mat-
ter experiences local vibrations that exist even at the absolute zero tempera-
ture, which is called the zero point energy.

Therefore, let us try to introduce an additional attracting potential, 
2 21

2 m rω δ , where the amplitude rδ  of oscillations plays the role of the de 
Broglie wavelength of the vibrating entity.  This expression can be rewrit-
ten as 21

2 rγ δ . Such potential is extremely important, because owing to these 
oscillations the vibrating entity emits and absorbs its inertons, as has been de-
scribed in the previous sections. Emitted inerton clouds overlap with similar 
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inerton clouds emitted by other entities, which results into the inerton interac-
tion in the physical system. The inerton interaction is additional to the pair 
interaction of electric nature, which refl ects the molecular potentials (41) (and 
similarly the inerton interaction emerges in systems of magnetically interact-
ing atoms and ions).

Let us examine a model system of N molecules interacting through the 
Lennard-Jones pair potential taking into account the inerton interaction 

21
2 rγ δ  between molecules. The attraction part of the pair potential is:

 
2 20 1

att 26( ) ( )
V

V gx r x
x

γ δ= −   (42)

and the repulsion part

 0
rep 12( )

V
V gx

x
= .  (43)

Here, on the right hand side of Eq. (42) in the first term the distance r from 
the node to a distant point is written as r = gx and in the second term the 
amplitude of oscillations is depicted as x rδ , where g is the lattice constant, 

rδ  becomes a parameter and x is the dimensionless variable that describes the 
distance. On the right hand side of Eq. (42) we also introduce the dimension-
less variable x for the distance. 

Note in the formalism described above, Eqs. (34)–(40), the sign describ-
ing attraction and repulsion is taken out of the values of Vatt and Vrep; that is 
way the right hand side in the Eq. (42) has the opposite sign to the attraction 
[37]. In the case of a classical system of interacting particles the action looks 
as follows [33].

 2[ ( ) ( )] lnS a N b N N N ξ≈ − +   (44)

where the functions a and b are determined in Eqs. (39) and (40), respectively.
For the potentials (the Eqs. (42) and (43)), the action (the Eq. (44)) has 

the form

 
2

8/30 34
3 5

B B
ln

V rS N N N
k k

γ δ ξ= − + +
Θ Θ   (45)

and the equation for the number of molecules in a cluster / 0S N∂ ∂ =  results in 
the solution (if we neglect the contribution on the side of the fugacity ξ)
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The dependence of N as a function of rδ  is shown in Fig. 2.5. Thus the appear-
ance of fractal clusters is governed by local vibrations of entities in condensed 
media. In particular, we can see the smaller rδ , the larger N. However, this 
is possible only when the amplitude rδ  of oscillations of particles near their 
equilibrium positions begins to drop, that is, becomes less than approximately 
10–11 m (Fig. 2.5).

FIGURE 2.5 Numerical solution N versus rδ  (46). Values of the parameters are 
20

0 4.25 10V −= ×  J and the force constant 1γ =  N/m.

Clusterization of water through the possible infl uence of an inerton fi eld 
was also examined [33].

An external inerton signal is able to drop rδ  even if the temperature does 
not decrease, which immediately increases the number N of molecules in the 
cluster (or brings to a cluster in the case when it initially did not exist due to 
the relatively large value of rδ ). Indeed, since the mass of entities oscillates 
together with their oscillating motion, any additional injection of mass in the 
form of inertons causes absorption of an extra mass leading to the appearance 
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of a mass defect (or surplus defect)  in each irradiated entity. Hence, the 
amplitude of the entity’s vibrations decreases:

 / ( ) / [( ) ],r h m r h m m r rδ υ δ υ δ δ= → = + Δ >′ ′  (47)

The phenomenon of diminution of the amplitude of the entity’s vibrations 
in a condensed matter is similar to decreasing the temperature: the lower the 
temperature, the lower the amplitude of vibrations. However, the tempera-
ture does not change. The phenomenon is stipulated by weighting of atoms, 

. The relaxation time, that is, return of the atom’s mass to the ini-
tial state, , is very long. The relaxation time lasts for days or even 
months, which means that classical thermodynamics requires a significant re-
consideration, because it must be supplemented by the mass exchange. First 
attempts to introduce some changes to the thermodynamics potentials caused 
by the mass exchange have already been taken [42–45].

Typical changes in the viscosity of sorbent samples irradiated by an iner-
ton fi eld are shown in Fig. 2.6. The dynamic viscosity and the shear viscosity 
of the sample under consideration signifi cantly depend on the exposure time 
in an inerton fi eld, which is shown in Fig. 2.7 for measurements conducted ap-
proximately half an hour after the inerton irradiation. Samples of water irradi-
ated by an inerton fi eld demonstrate an increase in the water density from 1 to 
about 1.2 kg/L, which was registered by a hydrometer. This indicates a change 
in both the density and the viscosity of water processed with an inerton fi eld. 
Liquid substances, gels, hand creams, ointments and similar substances after 
processing with an inerton fi eld generated by our device (Fig. 2.8) become 
more fl uid demonstrating a kind of a ‘superfl uidity’. In particular, the rate of 
penetration of hand creams through the skin increases 20–30%, which was 
measured by a special facility used in cosmetology.

In Fig. 2.9, one can see our inerton measuring device ‘Rudra,’ which was 
designed to measure the intensity and the spectrum of inertons in a range of 
frequencies from a few Hz to 100 kHz. Two types of the antenna were tested: 
a ferrite rod with a coil and a piezoceramic sensor. The electric scheme of the 
device is functioning on the basis of principles described in the present sub-
section. The antenna’s atoms absorbing inertons move from their equilibrium 
positions trying to arrange short-lived clusters, which results in an induction 
of local magnetic/electric fi elds in the antenna. In its turn these local fi elds im-
pact electrons in the electronic scheme. The generated electric current is fur-
ther processed, transmitting the received information to an analog-to-digital 
converter. The Rudra device successfully functions even when its antenna is 
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screened with a metal box, though usual receivers of electromagnetic waves 
have not been able to catch signals being directed towards this metal box.

FIGURE 2.6 Behavior of the viscosity of samples of palygorskite (a magnesium 
aluminum phyllosilicate with formula (Mg, Al)2Si4O10(OH)·4(H2O), a type of clay soil) 
irradiated with an inerton field. The viscosity of the control sample increases under 
atmospheric conditions with time, though the viscosity of the samples irradiated by the 
inerton field gradually decreases.

FIGURE 2.7 Viscosity versus time of inerton irradiation of an aqueous suspension of 
palygorskite.
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FIGURE 2.8 Biaktor’s laboratory batch unit Lx (http://biaktor.com). The device is 
intended for intensification of chemical physical reactions in liquid and gel substances.

FIGURE 2.9 Device ‘Rudra’ (interior and exterior) that measures inerton signals.

2.4.3 BOSE-EINSTEIN CONDENSATE

Although the gas cooling mechanism and the Bose-Einstein condensation of 
dilute gases were studied in detail, the submicroscopic approach allowed one 
to clarify subtle aspects of these phenomena [33]. Namely, the approach discloses 
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inner interactions and the organization of atoms in the Bose-Einstein conden-
sate.

When atoms are cooled to a temperature when the de Broglie thermal 
wavelength th B/ 3h m kλ = Θ  is comparable to the mean distance g between 
atoms, atomic inerton clouds stop to overlap, but they still touch each other, 
which synchronizes the atoms. Namely, in such a case the ( )−n g th atom 
emits its inerton cloud that then is fully absorbed by the nth atom; the nth 
atom emits its own cloud of inertons, which then is fully absorbed by the 
(n + g)th atom, etc. In other words, the coherent exchange of inerton clouds 
by the atoms when an inerton cloud emitted by one atom hops to the neigh-
boring atom and is absorbed by it, we relate with the phenomenon of Bose-
Einstein condensation.

Let us investigate whether the occurrence of clusters can be possible in 
a Bose-Einstein condensate. The action S for the ensemble of N interacting 
boson particles, which tend to clusterization with N particles in a cluster, has 
the form [33],

 [ ]{ }21
2 ( ) ( ) ln ( 1) lnS a N b N N N N ξ≅ − − + +   (48)

where the functions a and b are determined in Eqs. (39) and (40), respectively, 
ξ  is the rugosity, and in the action (the Eq. (48)) next two terms are preserved 
in contradistinction to the form (38). For simplicity, the repulsion potential 
can be taken in the form of Eq. (43). The attraction potential should include at 
least three terms: (i) the dispersion potential of interatomic interaction, which 
is usually written as 6

6 /C r− ; (ii) a potential formed by a trap, which can 
be modeled by a harmonic potential; and (iii) the harmonic potential caused 
by small spatial oscillations of atoms near their equilibrium positions, that is, 
inerton elastic interaction. So, the attraction and the repulsion potentials are

 att. 6 2 2 2 2 21 1
6 trap2 2( ) / ( ) ( )V rx C r x r x m r xγ ω δ= − − ,  (49)

 
rep. 12

0( ) /V rx V x=
,  (50)

where m is the mass of an atom, r is the distance between atoms, γ is the effec-
tive force constant of the trap, ω is the cyclic frequency of proper oscillations 
of an atom, rδ  is the appropriate amplitude and x is the dimensionless distance 
parameter.

Substituting potentials (the Eqs. (49) and (50)) into functions (the Eqs. 
(39) and (40)), respectively, we then construct the action (the Eq. (48)), which 
in the explicit form becomes
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Proper oscillations of atoms, which are characterized by the frequency ω, are 
produced by the movement of the atoms. In other words, the origin of the 
frequency ω is produced by collisions of atoms with their inerton clouds [24, 
30]: 2 / 2Tω π=  where T is the period of time between collisions of an atom 
and its inerton cloud (though in the present case we have to talk about colli-
sions of the inerton cloud of an atom with the neighboring atom); the value of 
T is related to the amplitude rδ  of oscillations of an atom and its velocity υ , 
1 / /T rυ δ=  (because the amplitude rδ  of oscillations of the atom is related 
to the atom’s de Broglie wavelength λ). Since in the case of Bose-Einstein 
condensation we can put 0μ =  for the chemical potential of atoms, the fugac-
ity 1ξ =  and hence the last term in Eq. (51) reduces to zero.

The expression for the number of atoms combined in a cluster comes from 
the equation / 0S N∂ ∂ = , or explicitly

 
3/56

6 020
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3 /C r V
N

r m rγ ω δ

⎛ ⎞−
≅ ⎜ ⎟⎜ ⎟+⎝ ⎠

. (52)

Here in Eq. (52) in the first approximation the numerator, that is, the dif-
ference between the attraction and repulsion energies at an equilibrium 
distance r  of interacting atoms, can be put 6 20

6 03 / 2.125 10C r V −− = ×  J. For 
the case of cesium atoms whose mass 25

Cs 2.207 10m −= ×  kg the amplitude rδ  
of oscillations of an atom is associated with its de Broglie wavelength λ: 

Cs/ ( )r h mδ λ υ= = . The trapping potential 21
trap2 rγ  is the fitting param-

eter that can be chosen equal to 0, 2.5×10–29 and 2.5×10–28 J.
The oscillation of atoms is caused only by their thermal mo-

tion: 
therm B Cs3 /k mυ υ≈ = Θ ≅ 33 10−×  m/s where we put a 

typical temperature of Bose-Einstein condensate 50Θ = nK. So, 
6

th Cs therm/ ( ) 10r h mδ λ υ −= = ≅  m and then the cycle frequency of 
atom oscillations become 3/ 9.43 10rω π υ δ= ≅ ×  s–1. The abovementioned 
numerical values of the parameters allow the evaluation of the number of 
atoms that assemble in a Bose-Einstein cluster, as N ~ 105. The interatomic 
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interaction gathers dilute cold atoms to clusters. But the cluster state is re-
alized when the absolute value of an attraction potential exceeds the ther-
mal energy, att.

BV k≥ Θ . This inequality holds for the case calculated above: 

the attraction energy 2 2 2 301 1
Cs trap2 2 1.7 10m r rω δ γ −+ ≈ ×  J exceeds the 

thermal energy 31
B 7 10k −Θ ≈ ×  J.

Thus we have shown that the phenomenon of Bose-Einstein condensation 
of bosons, which by defi nition exists in momentum space, represents a stable 
cluster of these bosons in the real space.

An interesting paper has recently been published in which the authors [5] 
claim observation of ultracold bosons at negative temperature that is stable 
against collapse for arbitrary atom numbers. A negative temperature was de-
rived in the framework of the following approach. The starting point was the 
Bose-Hubbard Hamiltonian

 21
2

,

ˆ ˆˆ ˆ ˆ ˆ( 1)i j i i i i
i j i i

H J b b U n n V n+= − + − +∑ ∑ ∑ r ,  (53)

which means, all cold atoms were distributed by sites of a lattice. In the Ham-
iltonian (the Eq. (53)) the first term describes a possible tunneling of atoms 
from one site to the other, the second term describes the attracting interaction 
between atoms, and the third term describes a cavity potential.

After some speculations in which Bose-Einstein condensation of atoms 
is reduced unreasonably to possible condensation of all atoms in one spatial 
point (though by the defi nition Bose-Einstein condensate is defi ned in momen-
tum space), [5] indicate conditions for the existence of negative temperature: 
stable negative temperature states with bosons can exist only for attractive 
interactions and an antitrapping potential. This means that in the Hamiltonian 
(the Eq. (53)) the second term should be negative and the third term positive. 
Then at negative temperature high-energy states should be more occupied by 
the atoms than low-energy states.

In pursuit of a negative temperature [5] mixed together momentum space 
and the ordinary physical space. Besides, by using thermodynamic defi nition 
of temperature

 1/ S/ E∂ ∂Θ =  (54)

where S is the entropy and E is the energy, they say the entropy should de-
crease with energy if high-energy states are more populated than low-energy 
ones.
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It is obvious that the theoretical considerations [5] are devoid of any 
physical meaning. In fact, the Hamiltonian (53) is arranged in an abstract 
space related to a lattice whose sites are allied with the ordinary physical 
space. At the same time Bose-Einstein condensate is determined in mo-
mentum space, that is, all bosons have the same momentum and therefore 
the condensate cannot be associated with Eq. (53) to the full. By defi nition 
the notion of the entropy S is defi ned only for stationary states, though in 
the experiments of [5] they dealt with fast transitional processes. The ener-
gy E, which is part of the expression (54), also is not defi ned because in the 
Hamiltonian (the Eq. (53)) one can see only components of the potential 
energy, though the authors talk about the population of high-energy states, 
which is possible only via introduction of the kinetic energy. Why did 
other researchers who studied upper levels (second, third and so on) oc-
cupied by excited atoms not talk about negative temperatures? Moreover, 
all thermodynamic functions including the entropy S require a revision, 
which is associated with the presence of a mass fi eld (the same as a tem-
perature fi eld, pressure fi eld, etc.), as has been mentioned in the previous 
subsection. In addition, objections against the entropy as a fundamental 
thermodynamic potential, has recently substantiated by Zhang [46].

The above criticism allows us to reinterpret the interesting experimen-
tal data presented by Braun et al. [5] in the following way. Momentum 
distributions in the atomic cloud were measured for the cases of the rest 
atomic cloud and that excited by the laser beam. The measurement meant 
a series of captured images at intervals of a few milliseconds. Braun et al. 
distributed these images arranged in the fi nal states of the atomic cloud be-
tween positive and negative temperatures. Images of the rest atomic cloud 
were related to positive temperatures and the images of excited atomic 
cloud were associated with negative temperatures.

If we look at the system of cold 39K atoms studied by Braun et al. from the 
submicroscopic viewpoint and the mechanism of clustering described above, 
we will see that the Bose-Einstein condensate (or in other words the cluster 
state of cold atoms) is preserved as long as the kinetic energy of excited atoms 
remains less than the potential energy U in Eq. (52). Switching antitrapping 
potential, which decreases the trapping potential V in Eq. (52), creates excita-
tions in the motion of atoms. Clearly, the temperature Θ should also be less 
than |U .

What is occurring in the cluster when some atoms become excited? First of 
all the anti-trapping potential partly diminishes the trapping potential 21

trap2 rγ  
in Eqs. (49) and (51). Besides, since the anti-trapping potential is distributed 
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in 3D space, we have to anticipate similar momentum distributions of atoms. 
Namely, the initially spherical cluster with the solution (the Eq. (51)) for the 
number of atoms must change the shape followed by the symmetry of anti-
trapping potential. In fact, in the general case the variable N is subdivided into 
Nx, Ny and Nz. The corresponding changes will appear in expressions for the 
functions a(N), b(N) and also the action S (the Eq. (51)). Then the fi nal solution 
for the number of atoms in a cluster will represent three different expressions 
along the axes X, Y  and Z. Herewith Nx + Ny + Nz = N . So a local disturbance 
in the lattice creates the situation that [5] interpreted as negative energy but if 
we look at the whole system, there is no reason to assume negative tempera-
tures below 0 K.

2.4.4 A CLUSTER OF ELECTRONS

A series of reports informed about observation of electron droplets [6–11]. 
Those droplets were generated through electric discharges. Interesting 
studies of charge droplets punching various materials were carried out by 
Shoulders and Shoulders [47].

Kukhtarev and Kukhtareva [12] carried out an experiment in which the 
formation of electron droplets was observed after illumination of a LiNbO3 
crystal by a focused laser beam (CW green laser, 532laser =λ  nm, 100=P  mW). 
In the course of the experiments, we observed a usual recording of holograph-
ic gratings. An interference pattern was formed between the pump laser beam 
and the scattered waves producing moving space-charge waves inside the 
crystal. Due to the electro-optic effect these space-charge waves modulated 
the refractive index, which resulted in the formation of holographic gratings. 
Thus, the pump laser beam diffracted on the holographic gratings visualizing 
the space-charge waves.

In addition we observed a very unusual phenomenon. Owing to the illumi-
nation of the crystal, a photon bunch induced electron emission in the impact 
area of the crystal boundary. The emitted electrons manifested themselves 
via an emergence of specular refl ection spots (Fig. 2.10). An analysis showed 
that those enigmatic droplets had the size of about 100 μm and each droplet 
included around 1010 electrons. Those bright droplets slowly moved in the 
space along the crystal surface.
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FIGURE 2.10 Left image: Enhanced back-reflected scattering from the surface of the 
ferroelectric crystal LiNbO3 covered with a thin metal film as seen on the screen. Right 
image: The specular reflected beam with the droplet.

Free electrons have never been observed at a velocity smaller than 105 
m s–1. At the same time in the experiment studied a droplet of electrons had a 
velocity only about 0.5 cm s–1. But how naked electrons could gather together 
in such a small space? A 1010 electrons in a droplet with a radius of 50 μm 
results in an electron density of about 1024 m–3, which means that the mean 
distance between electrons 810r −≈  m. Hence the repulsion energy between 
nearest electrons in the droplet becomes

 
2

20
repulsion

0
2.3 10

4
eE

rπ ε
−= ≈ ×  J  (55)

where e is the elementary electric charge and 0ε  is the dielectric constant. It 
seems the repulsion energy (the Eq. (54)) should lead to the scattering of elec-
trons with the same kinetic energy, 2

repulsion kinetic / 2E E mυ= = , which gives 
the electron velocity υ ≈ 2×105 m×s–1. However, electrons were not released 
from the droplets. So, they are strongly kept by a mysterious force!

To unravel the mystery, we must assume that the echo pulse transferred not 
only acoustic waves by also a fl ow of inertons knocked out from the vibrating 
crystal lattice of LiNbO3. In the vicinity of the surface of the crystal photo-
electrons absorbing inertons signifi cantly change their behavior. Namely, the 
inerton fi eld ties the electrons together. This means that in the droplet elec-
trons are characterized by two kinds of interactions: the Coulomb repulsion 
(55) and an elastic interaction caused by the overlapping of electrons’ inerton 
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clouds (or wave ψ-functions in terms of the conventional quantum mechani-
cal formalism). The absorption of inertons strengthens the elastic interaction 
between electrons, which is able to compensate the electrons’ Coulomb repul-
sion.

Let us introduce a dimensionless distance x. Then the repulsive paired 
potential for electrons can be rewritten as

 
2

rep.

0

1
4

eV
r xπ ε

=  (56)

The elastic interaction of electrons through the inerton field may be presented 
in the form of a typical harmonic potential

 att. 2 21
2 ( )V m r xω δ= ⋅  (57)

where m is the mass of an electron in the droplet, ω is the cyclic frequency of 
its oscillations and rδ  is the amplitude of the electron displacement from its 
equilibrium state (note that this amplitude rδ  is directly connected with the de 
Broglie wavelength of the electron, 2 rδ λ= ).

Then calculating the functions a (39) and b (40) and substituting them into 
the action (Eq. (38)) we obtain
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  (58)

The minimum of action (Eq. (58)) is reached at the solution of the equation 
/ 0S N∂ ∂ =  (if the inequality 2 2/ 0S N∂ ∂ >  holds). The corresponding solu-

tion is
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e r
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π ε

ω δ
≈  (59)

Therefore the quantity of electrons involved in a droplet is determined by the 
ratio of repulsive and attractive paired potentials.

The value of the frequency 2πω  can be estimated as 1 MHz, as evidenced 
by radiosignals recorded from droplets. Then substituting numerical values 
of all the parameters into Eq. (59), we will fi nd that the quantity 1010N ≈  of 
electrons in a droplet is reached at a non-realistically large size of the ampli-
tude 5~ 10rδ −  m of oscillations of electrons near their equilibrium positions. 
However, the confl ict can be easily overcome, if we introduce an effective 
mass m * for the electron and put a reasonable size 10 910 to 10rδ − −≈  m for 
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the amplitude of the electron oscillations. The quantity 1010N ≈  is satisfi ed 
when m* 22 242 (10 to 10 )− −≈ ×  kg, which exceeds the rest mass of electrons 
millions of times.

Hence the variation in the mass of electrons allows us to resolve the prob-
lem of the electron droplet stability.

2.5 CASIMIR EFFECT

Investigators studying the Casimir effect are confident that Casimir forces 
can drive the operation of nanomachinery and therefore such research is very 
important [48]. The majority of researchers associate these forces with the 
fractal energy , or zero-point energy, which is treated as the inner 
energy of vacuum fluctuations of the electromagnetic field [49]. As a result 
all mechanical effects observable in mesoscopic physics are connected with 
effects occurring in the physical vacuum itself. In quantum field theory, the 
London – van der Waals forces, Casimir-Polder forces and the Casimir and 
Lifshitz forces are physical forces arising from a quantized field.[1] consid-
ered two conducting square plates with the size LL ×  separated by a distance 
a. One plate is movable and in the fi rst situation the distance a is small and in 
the second situation it is large. 

Casimir [1] considered two

 1 1
2 2( ) ( )i I i IIi i

Eδ ω ω= −∑ ∑    (60)

between two summations that extend over all possible resonance frequen-
cies in the vacuum cavity confined by these two plates. The geometric size 
of the cavity 0 , 0x y≤ ≤ ≤ ≤L  L  and 0 z≤ ≤ a  determines its possible 
vibrating modes: /x xk n π= L , /y yk n π= L  and /z zk n π= a . To every 
kx, ky, kz correspond two standing waves. In an explicit form these standing 
electromagnetic waves spontaneously excited in vacuum have the form

 { }( ) ( )
2 ( ) t t

k k
k

c A e A eω ωπ
ω

− − + −= × +∑ kr krA e k
L

 (61)

For large L  wave numbers kx and ky can be regarded as continuous vari-
ables. Then Casimir presented the difference Eδ  (60) in an integral form, 
which allowed him to obtain the final result – an attractive energy between 
the two plates:
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The calculated result of Eq. (62) was verified experimentally by different re-
searchers. Moreover, the Casimir effect occurs also in the case of dielectrics 
[50], which points to its universality. Nowadays both theorists and experi-
mentalists continue to intensively study the Casimir effect. Theoreticians have 
been developing complicated generalized mathematical approaches based on 
fluctuations of electromagnetic field, virtual photons and other things that 
would appear from the zero-point energy and the physical vacuum in general 
[2, 3, 48–50].

At the same time Refs. [51] and [52] presented a very different viewpoint 
describing the same phenomenon, i.e. the attraction of two plates. The starting 
point is the consideration of a scalar fi eld of mass m that satisfi es the wave 
equation . The Casimir energy is written as an integral over 
the difference between the density of states ( )kδρ  in a domain of conducting 
planes and the vacuum,

 31
2

0

2( ) Im ( , , )
D

kE dk k d x G x x k iδ ω ε
π

∞

= +∫ ∫    (63)

where 24222 / cmkc +=ω  and 0
~ GGG −=  is the difference between the 

Green’s function in the background of conducting plates and the Green’s func-
tion in vacuum. To resolve the equation (63), [51] chose the Green’s function 
typical for classical geometric optics when G is defined by the sum over opti-
cal paths, which includes a combination of abstract factors used in classical 
ray optics. Then the mass m is approaching zero and they finally acquire Ca-
simir’s result (62).

Thus, the Casimir effect can be considered without reference to zero point 
energies. It can be originated from relativistic, quantum forces between fl uc-
tuations of charges and currents in borderline material plates [52].

We can further develop the Jaffe’s view; namely, materialize his fi cti-
tious scalar massive fi eld ( )xφ  and combining it with the mathematical 
method suggested by Casimir [1].

In the previous sections, we introduced submicroscopic mechanics start-
ing from the constitution of the real space in the form of the tessel-lattice. It 
has been shown that the motion of an object in the tessel-lattice leads to the 
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generation of inertons around it. In particular, neutral atoms and ions oscillating 
at their equilibrium positions in a solid generate inertons. Acoustic vibrations 
of entities in condensed matter produce long inerton waves that spread out of 
the matter as standing inerton waves. These are standing inerton waves of a 
body that form its Newtonian gravitational potential [32, 34, 37].

A linear spectrum of acoustic phonons breaks at the Debye frequency. 
At higher frequencies the dispersion relation is no longer linear (Fig. 2.11.). 
Round the edge of the Brillouin zone the spectrum of large wave numbers 
k becomes increasingly closer to discrete, because the distance between the 
wave numbers grows towards the edge of the Brillouin zone [53].

Therefore, since the spectrum of phonons at the edge of the Brillouin zone 
is specifi c, we may anticipate that the edge phonons will contribute to the in-
erton spectrum distinctively as well. Especially it can be justifi ed in the case 
of near-surface atoms of the material body. Near-surface atoms may have a 
more obvious discrete spectrum at the edge of the Brillouin zone than the bulk 
atoms and the difference of these spectra may give an additional distribution 
of inertons out of the body’s surface.

FIGURE 2.11 Spectrum of acoustic phonons that is destroyed near the end of the 
Brillouin zone.

Indeed, if the amplitude of a vibrating atom is rδ , which is the atom’s de 
Broglie wavelength λ, than the amplitude of its inerton cloud is /cλ υΛ =  
(20), where the phase speed is (2 / ) /g mυ π γ= ×  (for 1D chain). For ex-
ample, in the case of gold, its force constant γ may be estimated as varying 
from 4 to 9 N×m-1 [54]. Let us put 4γ =  N×m–1. The lattice constant of gold 
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is 104.08 10g −= ×  m; the mass of the atom of gold is 25
Au 3.27 10m −= ×  kg. 

Knowing these parameters, we valuate the phase velocity as 29.08 10υ ≈ ×  
m×s–1. Then the amplitude of vibrations of the pair of atoms at the edge 
of the Brillouin zone, that is, the atom’s de Broglie wavelength, becomes 

12
Au/ ( ) 2.23 10r h mδ λ υ −≡ = = ×  m. The appropriate amplitude of the at-

om’s inerton cloud is /cλ υΛ = = 0.74 μm. This value of Λ should be slightly 
lengthened owing to contributions on the side of other discrete modes and 
the thermal smearing. Nevertheless, the estimated value of Λ accounts for 
an order of the radius of the boundary effects that can specifi cally manifest 
themselves in the vicinity of the body.

It is intuitively clear these boundary inerton effects are logically linked to 
the Casimir effect. To proof this, we need to calculate the energy of attraction 
caused by short wave inertons.

Let us imagine a rectangular cuboid whose base ×L L  is located on 
the surface of a material body and it sticks outward having the height 
a. Let another cuboid with the same size be disposed inside the material 
body. What is the difference in the vibrating inerton energy for these two 
cuboids? Then we follow the computational scheme proposed by Casimir 
[1]:

 

2

2 2 2 2
2 2 2 2

0 0 0 0 0 0

1 1
( / )( / )

.x y x y x y x y
n

E

n nk k dk dk k k d k d k d n

δ ω
ππ

π π
∞ ∞ ∞ ∞ ∞∞

=

=

⎧ ⎫⎪ ⎪× + + − + +⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫∫ ∫ ∫ ∫



2 2

aL

a a

 (64)

Now turn to polar coordinates ( 2 2
x yk k κ+ = )
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Let us introduce a new variable, 2 2/ ( / )u κ π= a , which changes Eq. (65) to the 
form
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where under the integrands we have only dimensionless variables. Now we 
need to get rid of divergences in the integrals. Following Ref. [1], we intro-
duce a cutoff function f (k /km ), which equals to 1 when mk k<< , and 0 when 

mk k>> . Besides, imputing a new variable, w = u + n2 , we get instead of Eq. 
(66)
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where

 2
m

0
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∞
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If F(n) and all its derivatives tend to 0 as , the curly braces in Eq. (67) 
can be presented as follows [55].
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Since 2
m( ) [ / ( )]F n n f n kπ= −′ a , m( ) 2 [ / ( )]F n n f n kπ= −′′ a , m( ) 2 [ / ( )]F n f n kπ= −′′′ a  

and the function f  is the step function (zero and unity), it is reasonable to put 
here its mean value, 1/ 2f f= 〈 〉 = . Then we get: F(0) = 0, F(0) = 0, F(0) = –1. 
Substituting these values into the right-hand side of Eq. (69) we obtain the re-
sult: 1/ (24 30)− ⋅ . Substituting this value into the expression for Eδ  (the Eq. 
(67)), we immediately arrive at the Casimir outcome (the Eq. (62)). 

Thus, the Casimir attraction energy is caused by the inerton deforma-
tion of space in the vicinity of the plate’s surface. Inertons carry mass and 
hence they induce a peculiar distribution of the gravitational potential around 
a body. Shortwave inertons generated by vibrating atoms at the edge of the 
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Brillouin zone are responsible for the gravitational potential energy (the Eq. 
(62)), which produces a gravitational force 2 4/ (240 )cπ= F a  per square 
unit of the area. Longwave inertons generated by atoms in the acoustic spec-
trum induce the conventional Newtonian gravitational potential. Hence, at a 
short distance (about 1 μm or so) the gravitational potential is proportional to 
1/r3 and at macroscopic distances it is proportional to 1/r.

2.6 CONCLUDING REMARKS

In this chapter, we have shown that the real physical space is constructed as 
the tessel-lattice of primary topological balls, superparticles of the nature. In 
the tessel-lattice particles are determined as local stable deformations. The 
motion of a particle generates a cloud of Poincaré like excitations around the 
particle, which were named inertons. It has been argued that a particle togeth-
er with its cloud of inertons emerges in conventional quantum mechanics as 
an abstract construction called the wave ψ-function. These particle’s inertons 
carry both particle’s inert and gravitational properties.

The inerton fi eld, as well as the electromagnetic fi eld, are basic fi elds of 
the nature. The inerton fi eld is able to give a deeper insight into fundamen-
tal nature of things playing an important role in quantum physics, chemical 
physics, biochemistry, biophysics, and condensed matter. The inerton fi eld 
assembles neutral and charged particles, changes physical chemical properties 
of substance, such as viscosity, density, microhardness, conductivity, thermo-
dynamic potentials, etc.

There are a large variety of nanosystems and in some of them inerton 
effects are quite signifi cant. We have to mention also the recent fi nding of a 
new bosonic quasi-particle named ‘bondon,’ which aggregates distant quan-
tum particles [56, 57]. What is the reason for coupling of distant quantum 
particles? We may suggest that it is through the particles’ clouds of inertons. 
Because the wave ψ-function of such an aggregation allows for a separate 
study of the ψ-function’s core and its tail [58].

Fuchs et al. [59] presented a measurement of the excited state spin lev-
els of a single Nitrogen-vacancy center in diamond. It was found that strain 
plays a critical role in the spin dynamics signifi cantly infl uencing transverse 
anisotropy and hyperfi ne splitting. Therefore, the spin levels can be adjusted 
through strain engineering. Not only magnetic and electric fi eld, but also an 
inerton fi eld can induce strain. Hence the inerton fi eld also is able to control 
high-speed physical reactions, the more so that it is able to deeper penetrate 
materials in comparison with the electromagnetic fi eld.
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In nanophotonics, optical properties of thin fi lms are determined by dif-
fractive elements, which represent a quantum confi nement needed to tune the 
properties of electrons and photons together [60]. An inerton fi eld is able to af-
fect the absorption cross section of quantum dots, which can be used in nano-
photonics. In fact the author of Ref. [61] has shown that at a submicroscopic 
level inertons are responsible for the phenomenon of diffraction.

A few research teams could generate a hydrogen atom of the nuclear size. 
This phenomenon was called differently by them: ‘hydrex’ (for hydrogen) 
and ‘deutrex’ (for deuteron) [62–65] ‘hydrino’ [66–71], and ‘pseudoneutron’ 
[72–74]. To understand the principles of operation of such an exotic system, 
the researchers suggest new ideas, which seem very different in each special 
case. Nevertheless, from the author’s point of view, these nano- and submi-
croscopic systems can be unifi ed and accounted for in the framework of the 
deterministic submicroscopic concept of physics, which includes inerton fi eld 
as a basic fi eld of nature. Besides, though a number of experiments were con-
ducted in the area of low energy nuclear reaction, so far still no reasonable 
theory was reported [75]. A theory of could fusion can be developed on the 
basis of the present submicroscopic concept, which will open a gateway for 
optimization of crucial experiments in this important area of research.
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