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Abstract 
Starting from a sub microscopic point of view the gravitational time delay effect (the 
Shapiro effect) is described in detail. Two different microscopic approaches to the study 
of the photon delay caused by a gravitating body are examined: the variational 
procedure of classical mathematics and the fractal changes of the fundamental tessel-
lattice of space. It is shown that only the second approach brings about a reasonable 
alteration to the photon path consistent with the experimental result. Namely, the 
gravitating body contracts cells of space and hence photons hopping from cell to cell 
run through a larger number of cells, which results in a lengthening of the whole photon 
path.    
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1. Introduction

      The Shapiro [1,2] time delay effect, or gravitational time delay effect, is one of the 
four available classic solar system tests of general relativity. Shapiro sent radar signals 
from the Earth to the Mars, which passed near the Sun and took a little bit longer time to 
travel to the target and back, than it should occur in the case when the Sun was not 
present. The signal path is longer than the straight-line path between the planets due to 
deflection by the gravitational field of the Sun. The measured time delay 200 µs was 
also calculated [1,2] on the basis of the Schwarzschild metric of the Sun. General 
relativity introduces nonlinearity to the flat metric, such that the time component g44 1 
gains the appropriate correction g44 1 2GM /(c 2r) (see, e.g. Ref. 3). Later the time 
delay effect was observed for the binary pulsar PSR 1913+16 [4] and the phenomenon 
is applied to various other cases. 

   There are a few other alternative approaches, which agree with experimental data, 
to the resolution of the three classical tests: the motion of the Mercury’s, the light 
deflection of starlight by the Sun and the gravitational redshift of light. In particular, the 
motion of Mercury perihelion was considered by Giné [5], Dubois [6], Anderton [7] and 
the author [8]; the light deflection of starlight by the Sun was treated by Giné [9] and 
the author [8]; the gravitational redshift of spectral lines also was described by the 
author [8]. Berger [9] developed his own alternative approach to the description of all 
four classical tests of general relativity: the perihelion precession of Mercury, the 
deflection of light by the Sun, the redshift of light and the Shapiro time delay effect. 
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Berger’s calculations were based on the laws of classical physics with assumptions that 

the velocity of a test object near the gravitational centre is   c 1 4GM /(rc 2)  and the 
gravitational constant G is not a constant but a function with a similar dependence 

G G  1 4GM /(rc2) . Bergers’ study of the Shapiro time delay effect raises a 

question whether the photon path becomes longer due to an alteration of physical 
parameters or the longer path is associated with a real geometric change of space.          

Suntola [11] developed his very original approach to the description of the 
universe, the so-called dynamic universe. In his theory locally observed phenomena are 
derived from the conservation of the zero-energy balance of motion and gravitation in 
whole universe. Inertial work looks as the reduction of the rest energy due to motion in 
space, which gives a quantitative explanation to March’s principle. By using this 
approach, Suntola derives correct expressions for the perihelion precession of Mercury, 
the deflection of light by the Sun, the redshift of light and the Shapiro time delay effect; 
besides he describes also the Sagnac effect. In his theory the velocity of light is locally 
variable and can drop at the gravitational interaction.  

In the present paper the Shapiro time delay effect is treated from the viewpoint of 
submicroscopic concept.  

2. Submicroscopic Concept  

     A sub microscopic approach, which is applied below, also gives a detailed 
explanation of the phenomenon. In the author’s works [12,8,13] a theory of gravitation 
appears as a continuation of the developed submicroscopic (subquantum) mechanics of 
elementary particles and the theory of ordinary physical space that has been constituted 
as a tessellation lattice of primary topological balls [14-17]; this mathematical lattice 
has been called a tessel-lattice.  
      A physical particle is treated as a local deformation of this mathematical tessel-
lattice, i.e. a volumetric fractal deformation of a cell of the tessel-lattice. The motion of 
the particle through such structure is necessarily associated with the interaction of the 
particle with surrounding cells of the tessel-lattice. The motion can be described by a 
Lagrangian [18-22] 
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where m0 is the particle’s mass, x is its position; 0 is the mass of excited cloud of 
excitations of the tessel-lattice (they were named inertons, because they are associated 
with the field of inertia of the particle),  is the position of the centre mass of the cloud; 
1/T is the frequency of collisions of the particle with the cloud of inertons; 0  is the 
initial velocity of the particle and c is the speed of light. This Lagrangian is constructed 
as an inner development of the so-called relativistic Lagrangian of a particle 

L  m0c
2 10

2 /c 2 .   
     The moving particle is rubbing against the tessel-lattice, which results in the 
appearance of the particle’s cloud of inertons. But this is not a classic friction that stops 
the particle.  
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Indeed, the Euler-Lagrange equations: 0/)/(/  qLqLdtd    
for the particle (q  x) and its inerton cloud (q  ), which are based on the Lagrangian 
1, result in periodical solutions:  

 |)/sin(|10 Ttx   ,                                                                                                (2) 

  ]/[21)/cos()1(/ ]/[
0 TtTttx Tt   ,                                                        (3) 

|)/sin(|/ Tt  ,                                                                                                  (4) 

)/cos()1( ]/[ TtcTt   ,                                                                                                (5) 

cTT  ,0 .                                                                                                       (6)  

Expressions 2 and 3 show that the particle’s velocity periodically oscillates and   is the 
amplitude of particle’s oscillations along its path. In particular,   is the period of 
oscillation of the particle’s velocity that periodically changes between 0  and zero. The 
inertons cloud periodically leaves the particle and then comes back;  is the amplitude 
of oscillations of the cloud and c is the velocity of the cloud of inertons. The Lagrangian 
1 allows us to introduce an effective Hamiltonian of the particle, which describes its 
behaviour relative to the centre of inertia of the particle-inerton cloud system 

  2/)2/(2)2/( 222
eff XTmmpH                                                                              (7) 

where 22
00 /1/ cmm  . This is the harmonic oscillator Hamiltonian, which means 

that we can construct the Hamilton-Jacobi equation for a shortened action S1 of the 
particle    

  EXTmmxS  2/)2/(2)2/()/( 222
1                                                                    (8) 

where E is the energy of the moving particle. Introduction of the action-angle variables 
leads to the following increment of the particle action within the cyclic period 2T,  

TExdpS 21                                                                                                        (9)  

Eq. 9 can be rewritten by using the frequency )2/(1 T . At the same time 1/T is the 
frequency of collisions of the particle with its inertons cloud. Allowance for 

2/2
0mE   gets 

 0001 pTmS                                                                                                   (10)  

where 00 mp   is the particle’s initial momentum. If we equate the value S1 to 

Planck’s constant h , we obtain instead of expressions 9 and 10 the major de Broglie’s 
relationships  

phhE /,   ,                                                                                                    (11) 

which form the basis of conventional quantum mechanics.  
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      Relationships 11 allow one to derive the Schrödinger equation 
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       The submicroscopic concept developed in the real space on the scale of Planck’s 
length operates with a particle and the particle’s cloud of inertons. Conventional 
quantum mechanics, which was evolved in an abstract phase space on an atom scale, 
works with the wave  -function.  These two approaches can be combined if we assume 
that the inerton cloud of an entity, which is associated with the entity’s field of inertia, 
represents a substructure of the entity’s “mysterious” -wave function.  
      Therefore, the cloud’s inertons are a substructure of the matter waves and they are 
field carriers that transfer mass and fractal properties from the particle to distant points 
of space.  
     A range of space covered by the particle’s -wave function is specified by the 
amplitude of the inerton cloud, 0/c  (which is spread in transversal directions of 

the particle’s path), and the particle’s de Broglie wavelength   along the particle’s path 
( c  is the speed of light that is the velocity of migrating inertons in the inerton cloud, 
which are transversal to the particle’s path; 0  is the initial velocity of the particle, and 
also the component of the velocity of the inerton cloud along the particle’s path). If the 
particle is motionless, its inertia and gravitation are restricted in the particle’s 
deformation coat whose radius coincides with the particle’s Compton wavelength 

)/(Com mch  where m  is the particle’s mass.  

     In a macroscopic object local oscillations of entities generate inerton clouds, which 
overlap, forming a set of harmonics of inerton waves in the object [23]. Moreover, long-
wave inerton harmonics go far beyond the physical size of the object. These oscillating 
waves bear mass properties to a great distance away from the object. Oscillating waves 
mean that inertons emitted by the object return to it, which signifies that these inerton 
waves are standing spherical waves.   
     Solutions to standing spherical waves are characterised by the inverse dependence on 
the distance to the wave’s front. Standing inerton waves of a macroscopic object were 
studied in works [12,8,13] where it has been shown that at the average, the standing 
inerton wave results in a quasi-stationary mass potential field around the object with a 
mass M0 , which is subjected to spherical symmetry   

 rMM /~ 0 .                                                                                                 (13)  

This average mass field automatically results in the Newton’s gravitational potential  

rGMU / .                                                          (14) 

Besides, the notion of a point mass, which is typical for general relativity, cannot be a 
real point but rather a small macroscopic object whose smallest radius can be estimated 
at around 1 µm. 
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     In paper [8] the submicroscopic theory has been further developed for the interaction 
of mass objects; it was exhibited that the gravitational interaction between two mass 
objects should be described by a corrected Newton’s law 
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where ˙ r tan  is the tangential velocity of a test mass M1, which is in line with Poincaré’s 
remark [24] that an expression for the gravitational interaction should include the 
velocity of a moving object. By using expression 15, the submicroscopic approach has 
been applied to describe three macroscopic phenomena: the motion of Mercury’s 
perihelion, bending of a light ray by a star and the red shift of spectral lines. The 
approach allowed us to derive exactly the same equations for the description of the three 
phenomena as those that were predicted by general relativity (see, e.g. Ref. 3). This 
means that the solutions are also identical. 
     An important feature of the sub microscopic theory [12,8,13] is the derivation of 
Newton’s gravitational law, expression 14. The study shows that the metric of a mass 
object is flat, because the mass object does not possess any singularity in its 
gravitational field. Nonlinearity has manifested itself only at the interaction with a test 
object. A package of photons, which travels near the mass object, does not disturb the 
space, because photons do not form inerton clouds around themselves and hence cannot 
participate in the reciprocal interaction through inerton clouds with the mass object. 
Therefore, the first term in expression 3 does not affect photons. Only the second term 
of expression 3 is responsible for the deflection of photons of a gravitating body, which 
results in the deflection of a light ray by the angle [8] 

 )/(4 2rcGM                                   (16) 

(this result in the agreement with that obtained in the framework of the 
phenomenological formalism of general relativity, see, e.g. Ref. 25). Here r  is the 
radius of a gravitating body; in the case of the sun it is the Sun’s radius. 
     In this note we apply the submicroscopic theory of gravitation [12,8,13] to the 
description of Shapiro’s time delay effect.  

3. A photon Path in the Vicinity of a Gravitating Body 

     Let us consider a path of photons that travel from one planet to the other and come 
back passing near the Sun (Figure 1). A conventional consideration is based on a 
variational technique. Time has to be treated as a natural parameter,  

 c

ds
t ,               (17) 

where ds  is the interval length of the path of photons and c  is the constant, the velocity 
of light. A ray of light, which comes by a gravitating body with the mass M  and the 
radius R, has to be deflected in compliance with expression 16. 
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Figure 1. Photon path from one planet to the other, which passes near the Sun. The x-
axes line is a straight line; the upper line (dotted line) is the real path of photons. Below 
in the text we use the following designations: the distance from Earth to the Sun is 1r , 

the distance from the Sun to Mars is 2r  and the distance from Earth to Mars is 21 rr  . 
 

3.1. Classical Mathematical Variational Procedure 

     Following classical mathematics, namely, the variational procedure, we can write  
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c
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where the function y(x) is defined in expression 16 and Figure 1:  
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and, therefore, its derivative becomes 
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     Such approach does not require any uncertainties at extremely low distances, which 
are prescribed by the formalism of quantum mechanics, because at the sub microscopic 
consideration nature is indeed deterministic even at its minimal scale [13].   
     Substituting form 20 into expression 18 we obtain  
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where Rx /  is the dimensionless variable.  
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      From expression 21 we get for the time delay 
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where r1 and r2  are distances from the Earth to the Sun and from Mars to the Sun, 
respectively.  
     Physical constants are: 1110673.6 G  m3kg-1s-2, 301099.1 M  kg, 

9
1 106.149 r  m, 9

2 1094.227 r  m, 910695.0 R  m and 8103c  m/s. 
Substituting these constants into expression 10 we get an estimation of the time delay 

 1110~ t  s,                                                                                          (23) 

which is 5 orders less than the experimental result and the value obtained by Shapiro 
[1,2] on the basis of Schwarzschild metric’s components.  

 3.2. Fractal Changes in the Photon Path 

     A submicroscopic consideration allows us to determine deeper the proper time of 
migrating photons in the different way. Photons, as mass quasi-particles [13], have to 
interact with the mass body via the second term of expression 15. This interaction with 
the body’s total inerton cloud changes the path of photons near the body, expression 4, 
which one can perceive as a local space curvature. Since the real space is organised as 
the tessel-lattice of topological balls [14-17], the space curvature can easily be 
illustrated by changes in geometry of cells of the tessel-lattice around the mass object. 
Then in this case the proper time of photons, form 17, becomes 
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and thus the time delay, i.e. the second term in the right hand side of expression 24, 
appears as follows 
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where the angle of deflection )(x  is defined in expression 19. Calculating the integral 
in 25 we obtain  
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Note the numerical value of the result 26 coincides exactly with Shapiro’s outcome [1].  
     In the tessel-lattice, which represents an inner structure of real physical space, 
volumetric fractal changes of cells are associated with the physical notion of mass. But 
what is the gravitating body’s inerton cloud doing around the body? It distributes a mass 
potential around the body, which results in the induction of Newton’s gravitational law 
14 and 15.  In its turn the induction of mass in the space means the appearance of 
volumetric fractal changes in appropriate cells of the tessel-lattice.  
     This means that the tessel-lattice really shrinks around the body, as is schematically 
shown in Figure 2. Then for the problem displayed in Figure 1, the photon path acquires 
additional cells in comparison with the case of a degenerate space (when a gravitating 
mass is absent). Note such investigation is in agreement with general rules of fractal 
geometry (see, e.g. Ref. 26), which in reality makes it possible to measure a curve by 
means of the number of balls that cover it.  
     Studies of Bounias and the author [14-17] allowed us to introduce an additional rule 
towards a ball, namely, its feasible fractal volumetric changes.  
     Now putting the size of a topological ball of degenerate space (a cell of the 

undisturbed tessel-lattice) equal to the Planck’s size P  3/ cG 1.616 1035  m, 
we may estimate the number of cells that introduce the time delay, expression 26. The 
number of cells, which form a path for photons that hop from cell to cell with the 
constant velocity c, is  
 
 
 
 
 
 
 
 
 
Figure 2. Curvature of space as a fractal volumetric spherical deformation of cells of 
the tessel-lattice caused by standing inerton spherical waves of the gravitating body.  
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An additional number of cells involved in the path due to the cells’ fractal volumetric 
shrinking caused by the mass M  and the interaction of photon with the gravitational 
field of this mass via the second term in expression 15, is  
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     Thus, the Sun’s gravitational field shrinks the tessel-lattice, such that the number N  
of cells in a rectilinear path between the Earth and the Mars increases by the value of 

N , which is the maximum in the case when the path lays in the immediate vicinity of 
the Sun (in this case 3910~N , expression 28). 
 
4. Conclusion 
 
    General relativity showed that Newton’s law of gravitation was not adequate to 
account for certain gravitational experiments, namely: the motion of Mercury 
perihelion, the bending of a light ray, the gravitational red shift of spectroscopic lines 
and the Shapiro time delay effect. General relativity, as an abstract formal theory, used 
Newton’s law as the major term, but could not suggest any reasonable physical 
substitution for Newton’s law of gravitation.  
     In contrast to orthodox quantum theory and general relativity, the submicroscopic 
concept allows us to derive the Newton gravitational potential [12], expression 14, and 
to introduce the corrected version of Newton’s law of gravitation [8], expression 15, for 
interacting objects, which allows a description and submicroscopic interpretation of four 
macroscopic phenomena mentioned above. Owing to the inerton field introduced by the 
submicroscopic concept, which has already been tested in many experiments from a 
microscopic to cosmic scale, hypotheses resting on general relativity, such as 
gravitational waves and black holes have to be complete reviewed and possibly 
abandoned.   
      A curvature of space originates from a metric in particular Schwarzschild’s that 
represents properties of the geometry of space-time of a point mass M  at rest. 
Nevertheless, as shown in paper [8] the geometric metric includes implicitly the second 
term of physical interaction, expression 15, of the mass M  with a small test mass m  in 
the location of the latter. The present paper further develops the submicroscopic concept 
showing that it is fractality of the tessel-lattice, which is exhibited in the vicinity of a 
gravitating body accounting for the appearance of the so-called non-flat space-time 
metric of general relativity.  
     That is why fractality of the tessel-lattice and fractality of balls, which compose the 
tessel-lattice, are responsible for the real geometry of physical space. This means that 
space-time of general relativity is disclosed as the four dimensional space of the tessel-
lattice. In the tessel-lattice the fundamental metrics of the ordinary physical space are 
represented by a convolution product where the embedding part allows the description 
by the following relation [15] 

   
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 )()(4D wdzdydxd

Vd


                                  (29) 

where dV  is an element of space, and )(wd  a function accounting for the extension 
of coordinates to the 4th dimension through convolution () with the volume of space. 
The fourth dimension reflects the space fractality, i.e. fractality of the tessel-lattice’s 
balls. Time determined as a natural parameter through the path, expression 17, can 
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change only in the case when balls, which form the path, shrink. Therefore non-linear 
components of metric of general relativity shall be considered as a mapping of original 
shrunk balls of the tessel-lattice.  
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