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Abstract 

The main macroscopic phenomena predicted by general relativity (the motion of Mercury’s 
perihelion, the bending of light in the vicinity of the sun, and the gravitational red shift of 
spectral lines) are studied in the framework of the sub microscopic concept that has recently 
been developed by the author. The concept is based on the dynamic inerton field that is 
induced by an object in the surrounding space considered as a tessellation lattice of primary 
balls (superparticles) of Nature. Submicroscopic mechanics says that the gravitational 
interaction between objects must consist of two terms: (i) the radial inerton interaction 
between two masses M and m, which results in classical Newton’s gravitational law 

rMmGU /−= , and (ii) the tangential inerton interaction between the masses, which is 
caused by the tangential component of the motion of the test mass m and which is 
characterized by the correction 222 /)()/( crrmMG ϕ&− . It is shown it is precisely this 
correction that is responsible for the three aforementioned macroscopic phenomena and the 
derived equations exactly coincide with those derived in the framework of the formalism of 
general relativity, which means that the latter must be reinterpreted as follow: the 
gravitational field of the resting central mass is flat,− GM / r , but the emergence of a test 
mass disturbs the field in such a way that its distribution exactly looks like the Schwarzschild 
metric prescribes.  
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1. Introduction 

      The general theory of relativity formally predicted such phenomena as the 
motion of Mercury’s perihelion, the bending of light by the gravitational field of the 
sun and the gravitational red shift of spectral lines (see, e.g. Refs. [1-3]). The 
predictions were verified experimentally and since then general relativity was widely 
recognized as the fundamental physical concept of the 20th century. 

Since general relativity has all attributes of an action-at-a-distance theory, some 
researchers try to understand its deeper sense coming back to the old idea of retarded 
potentials, or velocity-depended potentials, which would account for a nature of the 
motion of the front of the gravitational potential.  

Soares [4] considering light as classical massive corpuscles calculated the 
deflection of a light beam under the Sun’s gravitational force, which is described by 
the central force hyperbolic orbit; in the first approximation he obtained the so-called 
Newtonian deflection )/(2 Sun

2
SunN RcGM=δ , though Einsteinian’s is still 

NGR 2δδ =  where SunM  and SunR  are the Sun’s mass and radius.       

Giné [5,6] reviewed tens of works dedicated to the study of the modified Newton’s 
potential, among which there were such potentials as Weber’s, Gerber’s and others. 
Giné argues that Weber’s potential, which is a velocity dependent potential 

rcrV /1)2/1( 22 ⋅−= & , allows one to introduce an additional force component. Such a 
component is the tangential component of the speed of a test particle in the 
gravitational field of a central mass M, which significantly influences the eccentricity 
of the hyperbolic orbit of the particle. Thus taking into account the finite propagation 
speed – the velocity of light c – he [5] concludes that the anomalous precession of the 
Mercury’s perihelion is associated with a second order delay of the retarded potential  
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As Giné [6] shows, at some fixed parameters the deflection of a light beam would 
reach that of derived by Einstein in 1916, i.e. )/(4 p

2
GR rcGM=δ  where pr  is the 

closest approach, i.e. perihelion of the beam. 
So far the mentioned phenomena have not been described on the basis of a 

microscopic approach. Nevertheless, before applying such an approach to the study of 
the problem, one has to become familiar with major statements of the concept. 
However, let us initially consider general discrepancies between phenomenological 
and microscopic standpoints. General relativity, as a typical phenomenological 
theory, considers matter and space-time as two independent entities, which, however, 
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can influence each other [7]: a matter curves space-time that is treated as a geometric 
entity resting on the statement of constancy of the speed of light c; photons are 
massless, they form the world line of light ray. Thus with such an approach the 
microscopic peculiarities of the real space remain beyond the study of the problem. 

Indeed, since photons transfer momentum, they physically have mass. But what is 
mass? At a scale comparative with the de Broglie wavelength λ  of the quantum 
system in question, a phenomenological description has to make way for a quantum 
mechanical one. However, conventional quantum mechanics is constructed in an 
abstract phase space and hence it cannot be used to investigate the behaviour of 
matter at a sub microscopic size: in line with the theory the less scale, the more 
indeterminism… Therefore, to account for the behaviour of matter at extremely small 
scales we have to rely on a theory developed in the real physical space, which is able 
to operate at any microscopic scale. 

For the first time Bounias and the author [8-12] proposed a detailed theory of the 
constitution of the real physical space. In line with those researches, which are based 
on topology, set theory and fractal geometry, the real space emerges as a tessellation 
lattice of primary topological balls (primary entities of Nature, or ‘superparticles’) 
whose size can be estimated as the Planck’s one, 10-35 m. It has been shown how 
mathematical characteristics, such as length, surface, volume and fractal geometry 
generate in this tessel-lattice the basic physical notions, such as mass, particle, 
electric charge, the particle’s de Broglie wavelength, etc. and the corresponding 
fundamental laws. In particular, mass emerges from space as its local deformation, 
i.e. when a volumetric fractal deformation is created in the appropriate cell of the 
tessel-lattice. Hence matter is no longer separated from space, as it occurs in general 
relativity, but can reasonably appear at special conditions.    

In the present paper we show in what way submicroscopic mechanics [13-19] 
developed in the real physical space [8-12] is capable of coping with the mentioned 
challenge, i.e. the (sub) microscopic description of three gravitational phenomena: the 
anomalous precession of Mercury’s perihelion, the bending of light and the red shift 
of spectral lines. We will see below how this difficult problem becomes really trivial 
in the framework of the sub-microscopic consideration based on the constitution of 
real space. Namely, we will see this is the motion of matter, which generates 
deformations of space around the matter: one component of such motion is 
responsible for the Newton gravitational term, the other component introduces a 
correction to Newton’s law, which we currently know as a curvature of space-time in 
general relativity.   

2. Correction to Newton’s gravitational law 

  Submicroscopic mechanics [13-19] studies the motion of a particle in the densely 
packed tessel-lattice, which means the induction of the interaction between a moving 
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particle and the tessel-lattice. As a result, a cloud of deformations of the space tessel-
lattice is accompanying the particle. These elementary excitations that migrate from 
cell to cell of the tessel-lattice represent a resistance of space, i.e. inertia, and, because 
of that, they have been called inertons. Thus, collision-like phenomena are produced: 
deformations of space (inertons) go from the particle to the surrounding space and 
then due to elastic properties of the tessel-lattice some come back to the particle. The 
Euler-Lagrange equations show the periodicity in the behaviour of the particle. 
Namely, the particle’s velocity oscillates between the initial value υ  and zero along 
each section λ  of the particle path and this section emerges as the de Broglie 
wavelength of the particle [13,14]. The amplitude of the particle’s cloud of inertons 

υλ /c=Λ  uncovers the physical meaning of the ψ -function: the latter, although 
determined in an abstract physical space, describes peculiarities of the range of space 
around the particle perturbed by the particle’s inertons. 

The next stage is that inertons transfer not only inertial, or quantum mechanical 
properties of particles, but also gravitational properties, because they transfer 
fragments of the deformation of space (i.e. mass) induced by the particle. The 
corresponding study [18,19] shows that inertons move like a typical standing 
spherical wave that is specified by the dependency 1/r; it is this behaviour that allows 
the derivation of Newton’s static gravitational law, 1/r . 

Thus inertons are carriers of both the inertial interaction (or, in other words, 
quantum mechanical’s including the so-called Casimir forces) and the gravitational 
interaction. Experimental evidence of the existence of inertons was carried out in 
Refs. [20-25]. The experiments described there were performed in micro and 
mesoscopic ranges. The inerton radiation, i.e. a flow of free inertons, carriers of mass, 
can be measured by a device designed by Didkovsky and the author [26] and, 
moreover, the inerton field allows a number of practical applications: for instance 
medical applications (so-called Teslar watch, see Refs. [23,24]), the manufacture of 
biodiesel [27], etc.  

Thus, having such conclusive results, we can now try to apply the description of 
the macroscopic phenomena starting from the same submicroscopic standpoint. 

Inertons moving by the hopping mechanism pass a local deformation, i.e. a 
fragment of mass, from cell to cell of the tessel-lattice. These quasi-particles can be 
either bound with an object or free (if they are emitted from the object’s inerton 
cloud). Any object, from a canonical particle to a star, is surrounded by its own 
inerton cloud. The inerton cloud oscillates in the vicinity of an object as a standing 
spherical wave and brings a tension to the surrounding space [17,18]; inerton waves 
of such central object are practically instant: they reach a test body with a speed no 
less than the velocity of light and, hence, these spherical waves are perceived by an 
outstanding observer as the static (Newtonian) gravitational potential: 
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                                                         V = −G M /r .                                                 (1)
     

In the case of a classical motionless object, its massive particles (atoms, etc.) 
oscillate at their equilibrium positions and the particles’ clouds of inertons overlap. If 
the object has a form close to spherical, the motion of the object’s inertons will 
happen only along radial lines and the velocity of the inertons will be characterized 
by the radial component that is equal to the speed of light c (the tangential component 
of inerton motion averaged by all the particles and directions is reduced to zero).  

When a test body falls within the inerton field of the central object, one can 
distinguish two components of the body’s inerton cloud. The components are: radial 

radr& , which is parallel/antiparallel to the radial ray issued from the central object to 

the test body; and tangential tanr& , which is transferral to the radial ray.  

It is interesting to refer to Poincaré [28]: What exactly did he indicate as the main 
reasons for gravity a hundred of years ago? By Poincaré, the expression for the 
attraction should include two components: one is parallel to the vector that joins 
positions of both interacting objects and the second one is parallel to the velocity of 
the attracted object. Thus the velocity of an object must influence the value of its 
gravitational potential. Grand Poincaré was at the origin of topology, he understood 
how the generalized theory of space was important for physics. Now his ideas indeed 
have received further development in the studies of Bounias and the author [9-19]. 

Equating the radial component to the velocity of light c, i.e. cr =rad&  [13-15], we 

obtain that the total velocity of the test body’s inertons ̂  c  in the frame of reference 
associated with the central object is defined from the geometric relationship (compare 
with Ref. [18]) 

                                      2
tan

22ˆ rcc &+=                                                                  (2)

   

Hence around the test body in the region Λ<r  (Λ  is the amplitude of the body’s 
inerton cloud, which is huge for a macroscopic system [18]) inertons of the test body 
move with the velocity cc >ˆ .  

Besides, relationship (2) shows that a test body does not fall exactly to the centre of 
mass of the central object, as expression (1) prescribes, but to a point distant from the 
centre of mass at a section calculated on the basis of expression (2). In other words, 
this means that the true gravitational attraction between a central heavy motionless 
object (mass M) and a test moving body (mass m) should be different from the 
Newton’s expression  

                                         
r

mM
GU −= .                                                                 (3) 
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Based on expression (2) we can assume that the gravitational interaction between 
the motionless mass M, which generates the potential (1) (see Refs. 17 and 18 for 
detail), and the moving mass m should include also a function 
( ) ( )22

tan
2
rad

2
tan /1/1 crrr &&& +≡+ . This function shows that the interaction between the two 

masses is realised through inertons whose total velocity at this interaction exceeds the 
velocity of light, i.e. cc >ˆ . Thus, the correct expression for the potential energy of 
gravitational attraction of the moving mass m to the central motionless mass M should 
have the following form 

                                      













+⋅−=

2

2
tan1
c

r

r

Mm
GU

&

                                                  (4) 

where tanr&  is the tangential velocity of the body with the mass m, i.e. the body’s 

orbital velocity (because the projection of the velocity of body’s inertons on the 
body’s path has the value of the velocity of the body, though in perpendicular 
directions the velocity of inertons can be compared with the speed of light c – in these 
directions the spatial tessel-lattice itself is guiding inertons [14-18]). We can see that 
the correction in the parentheses is very close to Weber’s for a velocity dependent 
potential (see Introduction) and such a correction indeed takes into account inner 
peculiarities of the system studied, which Weber and then Giné associated with the 
necessity to consider a short range action between interacting physical systems. In our 
case these are inertons that establish the direct interaction between distant masses M 
and m. 

Corrected Newton’s gravitational law (4) can be applied now to study the 
anomalous precession of the Mercury’s perihelion, the bending of light and the red 
shift of spectral lines. 

3. Motion of Mercury’s perihelion 

Classical mechanics yields the following equations describing the motion of a body 
with a mass m in the gravitational field induced by a large central mass M (see, e.g. 
Refs. 1-3) 

                               ϕ&2rmI = ;                                                                               (5) 

                                  
r

mM
GrmrmE −+= 22

2
12

2
1

cl. ϕ&& .                                            (6) 

Eqs. (5) and (6) are the classical integrals of the movement of momentum and the 
energy, respectively. However, as follows from the consideration above, in Eq. (6) we 
have to change the potential gravitation energy (3) to the corrected expression (4). 
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Then the energy conservation law (6) is corrected, such that two equations (5) and (6) 
are transformed to  

                            ϕ&2rmI = ;                                                                                  (7) 

                                 









+⋅−+=

2

22
22

2
12

2
1 1

c

r

r

mM
GrmrmE

ϕϕ
&

&& .                              (8) 

Note that here the dot over r and ϕ  means the differentiation by the proper time t of 
the body, i.e. t is the natural parameter that is proportional to the body path [14-17]. 
The system of equations (7) and (8) are identical to the equations of motion of a 
body in the Schwarzschild field obtained in the framework of the general theory of 
relativity (see, e.g. Refs. [1-3]). The solution to Eqs. (7) and (8) are available in 
literature (see, e.g. Refs. [1-3]) and it shows that it is the last term in Eq. (8), which 
displaces the perihelion of the planetary orbit by amount 

                                      
2

6
cL

GMπϕ =∆                                                                     (9) 

where L is the focal parameter. 

4. Bending of a light ray 

The energy E of a photon in the gravitational field induced by a large mass M can 
easily be written by recognizing that the photon is characterized by mass m [29,10]. 
However, the photon is not a canonical particle, but a quasi-particle, a local excitation 
of the tessel-lattice, which migrates in space by hopping from cell to cell. This means 
the photon does not possess its inerton cloud at all; it is itself similar to an inerton 
(also an elementary excitation of the tessel-lattice), though in addition to the inerton it 
has an electrically polarized surface [30].  

Therefore, since a photon does not disturb the ambient space with a cloud of 
inertons, it cannot experience the radial component of the gravitational field of a 
heavy object (no overlapping with the inerton cloud of the heavy object). Hence, the 
radial component rGMm/−  is absent in the interaction between the heavy object and 
the photon (recall that this Newton’s component emerges owing to the overlapping of 
inerton clouds of two interacting objects, the central object and the test body). 

Nevertheless, the tangential component 22 / crmMG ϕ&−  associated with the true 
motion of the photon must still be preserved. That is why the behaviour of the photon 
in the gravitational field of mass M has to be defined by the following pair of 
equations  
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                               ϕ&2rmI = ;                                                                            (10) 

                                   
2

2
22

2
12

2
1

c

rmM
GrmrmE

ϕϕ
&

&& −+=                                      (11) 

where the time t is treated as the natural parameter proportional to the photon path, 
which is very important for the invariance of the theory [14].   

Again, Eqs. (10) and (11) are exactly the same input equations for the study of the 
bending of a light ray in the Schwarzschild field, which are obtained in the 
framework of the formalism of general relativity. As is well known (see, e.g. Ref. [1-
3]) the solution to Eqs. (10) and (11) yields the following angle deviation of the ray 
from the direct line 

                                 ∆ϕ = 4
GM

c2r
.                                                                        (12) 

5. Red shift of spectral lines 

Let us consider a simple task. Let l and m be, respectively, length and mass of a 
mathematical pendulum and let ϕ  be the angle of the deviation of the pendulum from 
the equilibrium. The pendulum is found on the surface of a planet with the radius r. In 
this case the kinetic energy of the massive point is 

 

                                       22
2
1 ϕ&lmK =                                                                 (13) 

 
and the potential energy is  
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(to write the expression, we have used corrected Newton’s law (4)). Because of the 
small variable ϕ  one can write the energy E = K +U  of the massive point as follows 
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In the case of the potential depending on the velocity the equation of motion is 
determined by the Euler-Lagrange equation [31]  
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where in our case q ≡ ϕ  and t is the proper time of the oscillating massive point. In 
the explicit form it yields  

                             02
2

2
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If we designate (2πν0)2 = 2GM /(rl ), we can write instead of Eq. (16) 

                                     0
)/(21

)2(
2

2
0 =−

+
+ ϕνπϕ

rcGM
&& .                                           (17) 

In Eq. (17) assuming the inequality r0 = 2GM /c2 << r , we acquire the renormalized 
frequency of the pendulum 

                                         ν ≈ 1− GM

c2r

 

 
 

 

 
 ν0.                                                              (18) 

The scheme described above may easily be applied to vibrating atoms (ions) 
located on the surface of a star. This means that expression (18) determines the so-
called gravitational red shift of spectral lines 

                                           δν ≅ − GM

c2r
ν0 .                                                              (19) 

The result (19) is in complete agreement with that derived in the framework of 
general relativity (see, e.g. Refs. 1 and 2).  

6. Discussion 

To derive the equations of motion of the perihelion, Eqs. (7) and (8), the motion of 
light ray, Eqs. (10) and (11), and the shift of spectral lines, Eq. (17), we have started 
from very transparent ideas of classical physics and the sub-microscopic deterministic 
physical concept developed in works [8-27,29,30]. General relativity derives the same 
equations of motion, Eqs. (7), (8), (10) and (11), starting from the equations of 

motion in the form of a geodesic line (written in polar coordinates )(4 iξ ) 

                                             0
2

42

=Γ+
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µ
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for the investigation of the motion of the perihelion of a planet, and in addition takes 
into account the geodesic line for a light ray 

                                         0=
sd

d

sd

d
g

σρ

ρσ
ξξ

.                                                           (21) 

Here, the components of the metric tensor have the form  

                                             
)/(21

1
211
rcGM

g
−

−= ;                                               (22) 

                                             2
22 rg −= ;                                                                    (23) 

                                             ϑ22
33 cosrg −= ;                                                         (24) 

                                             )/(21 2
44 rcGMg −= .                                                  (25) 

 
General relativity achieves the result (18), (19) from the relationship connecting the 

coordinate frequency ν  of oscillating atoms and their proper frequency ν0,  

                                              044νν g=                                                                  (26) 

where the time component of the metric tensor 44g  is determined in expression (25).  
 It is believed that the Schwarzschild metric (22)-(25) describes the space-time 

around a spherically symmetric object, such as a point mass, a planet, a star (and a 
“black hole”).  

In contrast, the submicroscopic concept deriving Newton’s gravitational law (3) 

[18,19] does not reveal the reasons for the emergence of the term )/(2 2rcGM  in the 
metric of real space around a resting spherical object with mass M. From the sub 
microscopic viewpoint the metric of a resting mass object must be linear  
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The sub microscopic theory argues that an additional gravitational term appears in 
the equations of motion of a test body, Eqs. (8) and (11), owing to its interaction with 
the Newtonian gravitational field of the central mass M. In other words, it is the test 
body that perturbs the flat-space metric (27) of the resting object M in the place of the 
body’s motion. The perturbation introduces a correction to the Newtonian gravitation 
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(see expression (4)), such that through the tangential velocity tanr&  of the test body, 

the additional term 2/2 cGM  is added to the Newtonian one. 
Thus, if the submicroscopic approach is correct, a lack of correspondence should 

be available in the interpretation of the Schwarzschild’s solution. Let us recall how 
the result (22)-(25) is obtained in general relativity (see, e.g. Ref. 1, sect. 58 and Ref. 
2, chap. 13). The coordinate system is treated as undetermined identically. At the 
transformation that contains an arbitrary function f (r ) (for instance, the turn of 
spatial coordinates ξ i  round the axis that goes through the origin) 

 

                                             ii

r

rf ξξ )(=′                                                             (28) 
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the square of linear element  
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has to preserve its form. A suitable transformation of the coordinates, a kind of 
normalization, allows one to reduce the number of unknown functions A, B, C and D, 
such that the problem still remains spherical and static. Coordinates change as follows 

                                              iirf ξξξξ =′+=′ ),(44 .                                     (31) 

It was convenient to consider the metric in the form  
 

                                      g44 = A, g4q = 0, gqp = −Cδqp + Dχqχ p.                       (32) 

 
The metric tensor components g4q are transformed in line with equations  
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The further transformations reduced the number of unknown functions to two, A 
and D.  The choice (32) and the rules of transformations (33) generate a special form 

of Christoffel symbols i
pqΓ  in which a term proportional to 1/r appears. The time 

component of metric tensor becomes rg /144 α−= , which after comparison with 

Newton’s law allows one to write )/(21 2
44 rcGMg −= .  

It is generally recognized that the transformations (22)-(25) and (28)-(33) are 
completely correct, because they are performed in line with the similar 
transformations conventional in the special theory of relativity in which the interval 

222222 zyxtcs +++=  is treated as invariant with respect to the Lorentz 
transformations. However, Lorentz’s transformations are associated with the 
introduction of a (relative) velocity υ  to the system studied, which reduces the 

system parameters in accordance with the Lorentz factor 22 /1 cυ− .  Note the 
velocity υ  is a foreign parameter for the system, which is imposed on the system 
from outside. 

That is why if one wishes to search for invariance of the interval 2ds  (30), the one 

constructs the element 2sd ′  introducing some foreign parameters in it looking for the 

conditions when the equality 22 sdds ′=  is held. Such foreign parameters are 
available on the right hand side of expression (30) somewhere among functions A, B, 
C and D and also among coefficients iχ . Moreover, owing to the structure of these 

coefficients, ri
i /ξχ = , i.e. their inverse dependency on distance r , we can recognize 

them as possible sources of the outside gravitational field. Carrying out 
transformations (31)-(33) and so on until we reach the metric (22)-(25) (see, e.g. 
Refs. 1 and 2), we gradually add a perturbation to Newton’s gravitational potential of 
the central mass M  on the side of a test mass. That is the crucial point! Therefore, a 
point mass at rest possesses the conventional Minkowski flat-space metric (27), but 
this metric disturbed by inerton waves of a smaller mass changes to the metric (22)-
(25) in the place of the smaller mass location. 

7. Conclusion 

    In the present work we have shown how the sub microscopic views allow us to 
solve the problems of the motion of Mercury’s perihelion, the bending of a light ray 
by the sun and the gravitational red shift of spectral lines. The solutions are exactly as 
those derived from the formalism of general relativity. This means that the 
Schwarzschild metric (22)-(25) is correct, however, the interpretation of the final 
result is different; namely, the Schwarzschild metric does not represent properties of 
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the geometry of space-time of a point mass M at rest, but the geometry of space-time 
around this mass disturbed by a test smaller mass m.  

The misunderstanding could not be resolved so far, because a sub microscopic 
theory of the real space was absent. The availability of such theory [8-27,29,30] has 
allowed us to look now at many problems of gravitational physics from a very new 
point of view. In particular, it is finally clear now that the idea of black holes is 

fiction, as the parameter 2
0 /2 cGMr =  does not have the meaning of a critical radius 

at all (that was already accurately demonstrated by many researchers by means of 
using general relativity, especially see remarkable works by Loinger [32,33]). There 
are not also gravitational waves, because on the microscopic scale such role is played 
by inerton waves [21,18,19] (see also Refs. 32,33). The presence of inertons allows us 
to talk about such discipline as inerton astronomy [26]. However, all this is only a 
first step of the sub microscopic deterministic concept of physics. The other steps 
promise to be even more exciting. 
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