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Abstract

The main macroscopic phenomena predicted by gendadivity (the motion of Mercury’s
perihelion, the bending of light in the vicinity ¢fie sun, and the gravitational red shift of
spectral lines) are studied in the framework ofghb microscopic concept that has recently
been developed by the author. The concept is basethe dynamic inerton field that is
induced by an object in the surrounding space densd as a tessellation lattice of primary
balls (superparticles) of Nature. Submicroscopicclma@ics says that the gravitational
interaction between objects must consist of twanger(i) the radial inerton interaction
between two massedl and m, which results in classical Newton’s gravitationalv

U =-GMm/r, and (ii) the tangential inerton interaction betwethe masses, which is
caused by the tangential component of the motionthef test massn and which is
characterized by the correctionG(Mm/r)(r?¢?)/c?. It is shown it is precisely this
correction that is responsible for the three af@etioned macroscopic phenomena and the
derived equations exactly coincide with those dmtiin the framework of the formalism of
general relativity, which means that the latter mbg reinterpreted as follow: the
gravitational field of the resting central mas<lat,—GM /r, but the emergence of a test
mass disturbs the field in such a way that itsrithstion exactly looks like the Schwarzschild
metric prescribes.
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04. General relativity and gravitation
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1. Introduction

The general theory of relativity formally preted such phenomena as the
motion of Mercury’s perihelion, the bending of lighy the gravitational field of the
sun and the gravitational red shift of spectrakdin(see, e.g. Refs. [1-3]). The
predictions were verified experimentally and sitioen general relativity was widely
recognized as the fundamental physical concepteo20th century.

Since general relativity has all attributes of aicm-at-a-distance theory, some
researchers try to understand its deeper sensagdrack to the old idea of retarded
potentials, or velocity-depended potentials, whiatuld account for a nature of the
motion of the front of the gravitational potential.

Soares [4] considering light as classical massieepuscles calculated the
deflection of a light beam under the Sun’s graiotal force, which is described by
the central force hyperbolic orbit; in the firstpapximation he obtained the so-called

Newtonian deflection J =2GMg,,/(c?Rs,, ) though Einsteinian’s is still
Ogr = 20y WhereMg,, and Rg,,, are the Sun’s mass and radius.

Giné [5,6] reviewed tens of works dedicated toghaly of the modified Newton’s
potential, among which there were such potential$Veber’'s, Gerber’'s and others.
Giné argues that Weber's potential, which is a eigjo dependent potential
V = (-r2/2c?)@/r, allows one to introduce an additional force comgu. Such a

component is the tangential component of the spafed test particle in the
gravitational field of a central masé, which significantly influences the eccentricity
of the hyperbolic orbit of the particle. Thus takimto account the finite propagation
speed — the velocity of ligltt— he [5] concludes that the anomalous precessithreo
Mercury’s perihelion is associated with a secordkodelay of the retarded potential

m
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As Giné [6] shows, at some fixed parameters theediébn of a light beam would
reach that of derived by Einstein in 1916, idgyg =4GM /(czrp wherer, is the

closest approach, i.e. perihelion of the beam.

So far the mentioned phenomena have not been dedcon the basis of a
microscopic approach. Nevertheless, before applsiradp an approach to the study of
the problem, one has to become familiar with majtatements of the concept.
However, let us initially consider general discrepas between phenomenological
and microscopic standpoints. General relativity, aagypical phenomenological
theory, considers matter and space-time as tw@erhent entities, which, however,
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can influence each other [7]: a matter curves spiagethat is treated as a geometric
entity resting on the statement of constancy of spheed of lightc; photons are
massless, they form the world line of light ray.u§hwith such an approach the
microscopic peculiarities of the real space renb&yond the study of the problem.

Indeed, since photons transfer momentum, they palgihave mass. But what is
mass? At a scale comparative with the de Broglieelemgth A of the quantum
system in question, a phenomenological descrigtasto make way for a quantum
mechanical one. However, conventional quantum mechais constructed in an
abstract phase space and hence it cannot be usedestigate the behaviour of
matter at a sub microscopic size: in line with theory the less scale, the more
indeterminism... Therefore, to account for the bebavbf matter at extremely small
scales we have to rely on a theory developed imghkphysical space, which is able
to operate at any microscopic scale.

For the first time Bounias and the author [8-12)gwsed a detailed theory of the
constitution of the real physical space. In lin¢hmthose researches, which are based
on topology, set theory and fractal geometry, tred space emerges as a tessellation
lattice of primary topological balls (primary eig# of Nature, or ‘superparticles’)
whose size can be estimated as the Planck’s of& moOlt has been shown how
mathematical characteristics, such as length, eyfaolume and fractal geometry
generate in this tessel-lattice the basic physieations, such as mass, particle,
electric charge, the particle’s de Broglie wavetbngetc. and the corresponding
fundamental laws. In particular, mass emerges fspace as its local deformation,
i.e. when a volumetric fractal deformation is ceehin the appropriate cell of the
tessel-lattice. Hence matter is no longer separfated space, as it occurs in general
relativity, but can reasonably appear at speciadlitmns.

In the present paper we show in what way submiomscmechanics [13-19]
developed in the real physical space [8-12] is bkgaf coping with the mentioned
challenge, i.e. the (sub) microscopic descriptibtheee gravitational phenomena: the
anomalous precession of Mercury’s perihelion, theding of light and the red shift
of spectral lines. We will see below how this ditfit problem becomes really trivial
in the framework of the sub-microscopic consideratbased on the constitution of
real space. Namely, we will see this is the mota@nmatter, which generates
deformations of space around the matter. one coemomf such motion is
responsible for the Newton gravitational term, tteer component introduces a
correction to Newton’s law, which we currently knes a curvature of space-time in
general relativity.

2. Correction to Newton'’s gravitational law

Submicroscopic mechanics [13-19] studies the anotif a particle in the densely
packed tessel-lattice, which means the inductiothefinteraction between a moving
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particle and the tessel-lattice. As a result, ac¢lof deformations of the space tessel-
lattice is accompanying the particle. These eleargrgxcitations that migrate from
cell to cell of the tessel-lattice represent astesice of space, i.e. inertia, and, because
of that, they have been calletertons Thus, collision-like phenomena are produced:
deformations of space (inertons) go from the plartio the surrounding space and
then due to elastic properties of the tessel-ag@me come back to the particle. The
Euler-Lagrange equations show the periodicity ie thehaviour of the particle.
Namely, the particle’s velocity oscillates betweka initial valuev and zero along
each sectiond of the particle path and this section emergeshasde Broglie
wavelength of the particle [13,14]. The amplitudete particle’s cloud of inertons
N =Ac/v uncovers the physical meaning of thle-function: the latter, although

determined in an abstract physical space, descpibedliarities of the range of space
around the particle perturbed by the particle’stores.

The next stage is that inertons transfer not ongrtial, or quantum mechanical
properties of particles, but also gravitational gaxiies, because they transfer
fragments of the deformation of space (i.e. massluéed by the particle. The
corresponding study [18,19] shows that inertons endike a typical standing
spherical wave that is specified by the dependéngyt is this behaviour that allows
the derivation of Newton'’s static gravitational laiir .

Thus inertons are carriers of both the inertiakhattion (or, in other words,
guantum mechanical’s including the so-called Casinices) and the gravitational
interaction. Experimental evidence of the existentenertons was carried out in
Refs. [20-25]. The experiments described there wseggformed in micro and
mesoscopic ranges. The inerton radiation, i.eowa @f free inertons, carriers of mass,
can be measured by a device designed by Didkovskly tae author [26] and,
moreover, the inerton field allows a number of picat applications: for instance
medical applications (so-called Teslar watch, sets 23,24]), the manufacture of
biodiesel [27], etc.

Thus, having such conclusive results, we can ngwarapply the description of
the macroscopic phenomena starting from the satmaistoscopic standpoint.

Inertons moving by the hopping mechanism pass al ldeformation, i.e. a
fragment of mass, from cell to cell of the tessdfite. These quasi-particles can be
either bound with an object or free (if they areitead from the object’'s inerton
cloud). Any object, from a canonical particle tostar, is surrounded by its own
inerton cloud. The inerton cloud oscillates in thenity of an object as a standing
spherical wave and brings a tension to the surriognsbace [17,18]; inerton waves
of such central object are practically instantytheach a test body with a speed no
less than the velocity of light and, hence, thgdeescal waves are perceived by an
outstanding observer as the static (Newtonian)igi@nal potential:
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V=-GM/r. 1) (

In the case of a classical motionless object, itssive particles (atoms, etc.)
oscillate at their equilibrium positions and thetgées’ clouds of inertons overlap. If
the object has a form close to spherical, the motb the object’s inertons will
happen only along radial lines and the velocityha inertons will be characterized
by the radial component that is equal to the spédight c (the tangential component
of inerton motion averaged by all the particles dimdctions is reduced to zero).

When a test body falls within the inerton field tfe central object, one can
distinguish two components of the body’s inertooud. The components are: radial
r'ag» Which is parallel/antiparallel to the radial resgued from the central object to

the test body; and tangentigl,,, which is transferral to the radial ray.

It is interesting to refer to Poincaré [28]: Whatetly did he indicate as the main
reasons for gravity a hundred of years ago? By Roincthe expression for the
attraction should include two components: one il to the vector that joins
positions of both interacting objects and the sdoome is parallel to the velocity of
the attracted object. Thus the velocity of an abjeast influence the value of its
gravitational potential. Grand Poincaré was at thegiro of topology, he understood
how the generalized theory of space was importanpliysics. Now his ideas indeed
have received further development in the studiddonfnias and the author [9-19].

Equating the radial component to the velocity ghtic, i.e. r 4 =c [13-15], we

obtain that the total velocity of the test bodyieitonsc in the frame of reference
associated with the central object is defined fthengeometric relationship (compare
with Ref. [18])

e =c?+rf, @

Hence around the test body in the regior A (A is the amplitude of the body’s
inerton cloud, which is huge for a macroscopic eys{18]) inertons of the test body
move with the velocityc >c.

Besides, relationship (2) shows that a test boas amt fall exactly to the centre of
mass of the central object, as expression (1) pbes; but to a point distant from the
centre of mass at a section calculated on the bé&sigpression (2). In other words,
this means that the true gravitational attractietwleen a central heavy motionless
object (massM) and a test moving body (mas® should be different from the
Newton’s expression

Mm

U=-G", 3)
r
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Based on expression (2) we can assume that théagiaval interaction between
the motionless madsl, which generates the potential (1) (see Refs.d 18 for
detail), and the moving massm should include also a function

(1+r't§n/r'r§d)s(1+r't§n/c2). This function shows that the interaction betwéea two

masses is realised through inertons whose totatiglat this interaction exceeds the
velocity of light, i.e.C>c. Thus, the correct expression for the potentiargy of
gravitational attraction of the moving masgo the central motionless massshould
have the following form

: 2
_ Mm l'an

r c

where 1, is the tangential velocity of the body with the ssa, i.e. the body’s

orbital velocity (because the projection of theoe#y of body’s inertons on the
body’s path has the value of the velocity of thedygothough in perpendicular
directions the velocity of inertons can be companvét the speed of light — in these
directions the spatial tessel-lattice itself isdyog inertons [14-18]). We can see that
the correction in the parentheses is very clos&/éber’s for a velocity dependent
potential (see Introduction) and such a correctimeed takes into account inner
peculiarities of the system studied, which Webet #iren Giné associated with the
necessity to consider a short range action betweeracting physical systems. In our
case these are inertons that establish the dimestaction between distant mas$s
andm.

Corrected Newton’s gravitational law (4) can be leggp now to study the
anomalous precession of the Mercury’s perihelibe, bending of light and the red
shift of spectral lines.

3. Motion of Mercury’s perihelion

Classical mechanics yields the following equatidescribing the motion of a body
with a masgan in the gravitational field induced by a large cahtmassM (see, e.g.
Refs. 1-3)

| =mr2p; (5)
Ed_:%nf2+%mr2¢2—e@. (6)

Egs. (5) and (6) are the classical integrals ofrttevement of momentum and the
energy, respectively. However, as follows from ¢basideration above, in Eq. (6) we
have to change the potential gravitation energyt¢3he corrected expression (4).
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Then the energy conservation law (6) is correcdadh that two equations (5) and (6)
are transformed to

| =mr?g; (7)

242
E:%mr2+%mr2¢2—GMrmEE1+rc¢; ] (8)
Note that here the dot overand ¢ means the differentiation by the proper titra
the body, i.et is the natural parameter that is proportionah® bhody path [14-17].
The system of equations (7) and &k identical to the equations of motion of a
body in the Schwarzschild field obtained in the feavork of the general theory of
relativity (see, e.g. Refs. [1-3]). The solution Egs. (7) and (8) are available in
literature (see, e.g. Refs. [1-3]) and it shows the the last term in Eqg. (8), which
displaces the perihelion of the planetary orbiabyount

Ag = 677?_—22 9)

whereL is the focal parameter.

4. Bending of a light ray

The energ)E of a photon in the gravitational field induced &yarge masM can
easily be written by recognizing that the photorhsracterized by mass [29,10].
However, the photon is not a canonical particlé,abguasi-particle, a local excitation
of the tessel-lattice, which migrates in space tyyding from cell to cell. This means
the photon does not possess its inerton cloudl;ait & itself similar to an inerton
(also an elementary excitation of the tessel-ka}tithough in addition to the inerton it
has an electrically polarized surface [30].

Therefore, since a photon does not disturb the emspace with a cloud of
inertons, it cannot experience the radial compoménie gravitational field of a
heavy object (no overlapping with the inerton clamidhe heavy object). Hence, the
radial component GMm/r is absent in the interaction between the heavgablgnd
the photon (recall that this Newton’s component igg@e owing to the overlapping of
inerton clouds of two interacting objects, the canbbject and the test body).

Nevertheless, the tangential componerBMmr ¢2/c? associated with the true

motion of the photon must still be preserved. Tibathy the behaviour of the photon
in the gravitational field of masM has to be defined by the following pair of
equations
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| =mr?g; (10)

Mmr ¢?

CZ

E=imi?+imr’p®-G (11)
where the time is treated as the natural parameter proportianaihé photon path,
which is very important for the invariance of theaory [14].

Again, Egs. (10) and (1Bre exactly the same input equations for the study of the
bending of a light ray in the Schwarzschild fieithich are obtained in the
framework of the formalism of general relativitys A well known (see, e.g. Ref. [1-
3]) the solution to Egs. (10) and (11) yields tb#olwing angle deviation of the ray
from the direct line

GM

Np=4—
cr

. (12)

5. Red shift of spectral lines

Let us consider a simple task. leandm be, respectively, length and mass of a
mathematical pendulum and lgtbe the angle of the deviation of the pendulum from

the equilibrium. The pendulum is found on the stefaf a planet with the radiusin
this case the kinetic energy of the massive psint i

K =1ml%p? (13)

and the potential energy is

U=-G__Mm 1410 (14)
r +| [{l-cosp) c?

(to write the expression, we have used correctedtdies law (4)). Because of the
small variablep one can write the enerdy = K +U of the massive point as follows

2 242
ED%mlquZ—GMm—GMm[E—W i J ] (15)
r r 2r c

In the case of the potential depending on the #gldbe equation of motion is
determined by the Euler-Lagrange equation [31]
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dJK_dou _JK v _.
dt 9 dt dq Jdq Jq

where in our casg = ¢ andt is the proper time of the oscillating massive poin
the explicit form it yields

{I2+2GM%]¢+GMI¢=O. (16)
rc r

If we designatg2nv,)> = 2GM/(rl), we can write instead of Eq. (16)

. @m,)?
¢+1+2(3M/(czr) $=0. a7

In Eq. (17) assuming the inequality=2GM/c” <<r, we acquire the renormalized
frequency of the pendulum

V= (1— GTM] Vo- (18)
cr

The scheme described above may easily be appliedbtating atoms (ions)
located on the surface of a star. This means tkaession (18) determines the so-
called gravitational red shift of spectral lines

ov —GTMVO. (29)
cr

The result (19)is in complete agreement with that derived in the framework of
general relativity (see, e.g. Refs. 1 and 2).

6. Discussion

To derive the equations of motion of the periheliggs. (7) and (8), the motion of
light ray, Eqgs. (10) and (11), and the shift ofcpa lines, Eq. (17), we have started
from very transparent ideas of classical physicsthe sub-microscopic deterministic
physical concept developed in works [8-27,29,3@n&al relativity derives the same
equations of motion, Egs. (7), (8), (10) and (1dtprting from the equations of

motion in the form of a geodesic line (written iolgr coordinatest *")

d2<z4 dfp d{g
+I7, =0
dt> 77 dt dt

(20)
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for the investigation of the motion of the perilaliof a planet, and in addition takes
into account the geodesic line for a light ray

dé? dé?
7 ds ds

=0. (21)

Here, the components of the metric tensor havéotime
1

ST oM e f22
Upp =17 (23)
Uz =—T2cog; (24)
U4 =1-2GM /(c?r . ) (25)

General relativity achieves the result (18), (¥8pf the relationship connecting the
coordinate frequency of oscillating atoms and their proper frequengy

V= \/9_441/0 (26)

where the time component of the metric tenggy is determined in expression (25).

It is believed that the Schwarzschild metric (22)) describes the space-time
around a spherically symmetric object, such asiatpoass, a planet, a star (and a
“black hole”).

In contrast, the submicroscopic concept derivingvtda’s gravitational law (3)
[18,19] does not reveal the reasons for the emermgehthe term2GM /(c?r) in the

metric of real space around a resting sphericatabjyith masavl. From the sub
microscopic viewpoint the metric of a resting makgct must be linear

-1 0 0 O
g, = 0O -1 0 O 271
10 0 -10

0O 0 0 1

The sub microscopic theory argues that an additigraevitational term appears in
the equations of motion of a test body, Egs. (8) @), owing to its interaction with
the Newtonian gravitational field of the centralga¥. In other words, it is the test
body that perturbs the flat-space metric (27) efristing objedw in the place of the
body’s motion. The perturbation introduces a cdroecto the Newtonian gravitation
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(see expression (4)), such that through the tarajerdlocity r,,, of the test body,

the additional tern2GM /c? is added to the Newtonian one.

Thus, if the submicroscopic approach is corredgck of correspondence should
be available in the interpretation of the Schwahnitdts solution. Let us recall how
the result (22)-(25) is obtained in general relgtiysee, e.g. Ref. 1, sect. 58 and Ref.
2, chap. 13). The coordinate system is treatednagtarmined identically. At the
transformation that contains an arbitrary functidé(r) (for instance, the turn of

spatial coordinateg' round the axis that goes through the origin)

gi=tg (28)

where

F=VEPHEPHEP, I EE HEPHED=10), (29)
the square of linear element

ds? = A(r)d&*” +2B(r) y,d&*d&®
— C(1) 3, AEAEP + D(1) Yo ¥ pdEIdEP

(30)

has to preserve its form. A suitable transformatadnthe coordinates, a kind of
normalization, allows one to reduce the numberrmddnown functionsA, B, C andD,
such that the problem still remains spherical d@atics Coordinates change as follows

EV=&+1(r), &'=¢&. (31)

It was convenient to consider the metric in therfor
u=A 0= 0, Op = —Céqp +Dx X, (32)

The metric tensor componengg, are transformed in line with equations

i k
A& . 08 OF (33)

gi].q = g44 d{lq +g4q1 gqp - d{'q df_'p gik'
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The further transformations reduced the numbernddhawn functions to twoA
andD. The choice (32) and the rules of transformati®® generate a special form

of Christoffel symbolsl'qiID in which a term proportional to rlappears. The time
component of metric tensor becomgs, =1-a/r, which after comparison with

Newton’s law allows one to writg,, =1-2GM 1(c?r).

It is generally recognized that the transformati¢@g)-(25) and (28)-(33) are
completely correct, because they are performed ime Iwith the similar
transformations conventional in the special theafryelativity in which the interval

s?=ct?+x*+y*+7z® is treated as invariant with respect to the Lorentz

transformations. However, Lorentz’s transformatioage associated with the
introduction of a (relative) velocityy to the system studied, which reduces the

system parameters in accordance with the Lorenﬂnrfa&l—uzl c’>. Note the

velocity v is a foreign parameter for the system, which ipdeed on the system
from outside.

That is why if one wishes to search for invariant¢he intervalds® (30), the one
constructs the element ? introducing soméoreign parametersin it looking for the

conditions when the equalitds’ = &> is held. Such foreign parameters are
available on the right hand side of expression E€@)ewhere among functioAs B,
C andD and also among coefficienfg . Moreover, owing to the structure of these

coefficients, y; = £'Ir, i.e. their inverse dependency on distanceve can recognize

them as possible sources of the outside gravittiolreld. Carrying out
transformations (31)-(33) and so on until we re#oh metric (22)-(25) (see, e.g.
Refs. 1 and 2), we gradually add a perturbatioNgwton’s gravitational potential of
the central mas$/1 on the side of a test mass. That is the cruciedtbdherefore, a
point mass at rest possesses the conventional Msldlat-space metric (27), but
this metric disturbed by inerton waves of a smathass changes to the metric (22)-
(25) in the place of the smaller mass location.

7. Conclusion

In the present work we have shown how the sudsascopic views allow us to
solve the problems of the motion of Mercury’s pelibn, the bending of a light ray
by the sun and the gravitational red shift of s@dines. The solutions are exactly as
those derived from the formalism of general relgtiv This means that the
Schwarzschild metric (22)-(25) is correct, howewde interpretation of the final
result is different; namely, the Schwarzschild meetioes not represent properties of
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the geometry of space-time of a point mikat rest, but the geometry of space-time
around this mass disturbed by a test smaller mass

The misunderstanding could not be resolved solfacause a sub microscopic
theory of the real space was absent. The avatlalofisuch theory [8-27,29,30] has
allowed us to look now at many problems of graiotal physics from a very new
point of view. In particular, it is finally clearow that the idea of black holes is

fiction, as the parameteap = 2GM /c? does not have the meaning of a critical radius

at all (that was already accurately demonstrateanbaypy researchers by means of
using general relativity, especially see remarkatdeks by Loinger [32,33]). There
are not also gravitational waves, because on tleeostgopic scale such role is played
by inerton waves [21,18,19] (see also Refs. 32;B3. presence of inertons allows us
to talk about such discipline as inerton astrond@6]. However, all this is only a
first step of the sub microscopic deterministic agpt of physics. The other steps
promise to be even more exciting.
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