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Abstract 

The probability of macroscopic quantum tunneling of polarization in a finite H-bonded chain is treated theoretically with 
regard to the influence of chain anisotropy. It is shown that the anisotropy stipulated by different microscopical effects plays a 
major role in the tunneling rate of polarization. © 1997 Elsevier Science B.V. 
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1. I n t r o d u c t i o n  

The existence of  short hydrogen-bonded chains has 
been proved experimental ly [1] in organic and bio- 
organic systems. It has been shown by Zundel and 
co-workers [1-6]  that the H-bonded chain is charac- 
terized by large proton polarizabil i ty and its polariz- 
ation fluctuates ceaselessly between two opposite 
directions. The H-bonded chain is now considered 
as a main structural unit of  the proton channel in 
proton-conductive biomembranes [1,7]. Therefore 
knowledge of the mechanism of  chain polarization 
fluctuations is very important as it should give the 
additional information needed for the detailed micro- 
scopic description of  proton motion along the chain. 

The physical properties of  the H-bonded chain dif- 
fer significantly from those of  its nearest surround- 
ings. Because of  this the chain can be considered as 
a quasi-isolated and quasi-one-dimensional  domain. 

* Corresponding author. 

In this paper we study the dynamics of  such a domain 
and propose a macroscopic mechanism of  polarization 
oscillations of  the H-bonded chain. Our treatment is 
essentially based on our previous work [8] in which 
the polarized current caused by water domains 
adsorbed on a metal film was studied in detail. 

2. H - b o n d e d  c h a i n  as a d o m a i n  

We will consider the H-bonded chain shown in 
Fig. 1. We imply the chain is impressed in a con- 
densed matter and two opposite configurations of  
the chain (a and b) have the same energy. The aim 
of the present paper is to show that repolarization of  
H-bonds, i.e. the transition a ---* b (or b ~ a) in Fig. 1 
for a finite chain can occur by virtue of  macroscopic 
quantum tunneling of  the chain polarization P. 

The motion of  a proton in the strong or middle H-bond 
can be described in terms of  a two-well potential. Let 
^ '~  ^ 

aR(aR) and tiLt(ilD be Fermi operators in the right 
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Fig. 1. The H-bonded chain. (a) OH groups are oriented to the right; 
(b) all OH groups are oriented to the left. 

and left wells respectively. Then one can introduce the 
notion of  pseudospin (see, e.g. Ref. [9]): 

 la) 

^ v  I ^ " I  ^ " 

wherej  is the number of  a two-well potential. Here the 
z component of  pseudospin is given the dipole moment 
operator of the jth H-bond; the x component of the 
pseudospin is the tunneling operator (it describes 
oscillations of a proton in the H-bond); the y compo- 
nent is the operator of local current. In this case the 
Hamiltonian of  an H-bonded chain can be written in 
the form 

f { = - h f l  ~j ~ j_ !  y. Jjj,~O},_l Y~Bjj, O]~. ~, (2) • 2j j ,  jj, 

here h~ is the tunneling energy of  a proton in the H-bond 
potential well; Jjj, is the energy of  mutual interaction 
of the jth and j ' th  protons; B H is the energy of mutual 
interaction between the pseudospin and lattice vibra- 
tions. I f / 4 j  is the mean field, then the equation of 
motion of  an average value of  the pseudospin has the 
form [9] 

d(ffj)~ , , ~ .1 
=£~j)t x Hj(t) ~ (3) 

where 

#s(t) = adO, a<~j)i (4) 

Eqs. (3) and (4) are equivalent to the equations of free 
classical precession of  the pseudospin round the 

momentary value of mean field in the present point. 
We assume that the dipole moment of  each H-bond in 
the chain has the same value and direction. In this 
approximation the two sides of  Eq. (3) can be multiplied 
by a factor corresponding to the quantity N of H-bonds 
in the chain. Then Eqs. (3) and (4) are transformed to 
the equation of  motion for the vector polarization P of  
the chain (i.e. ,fi= 2N(ff)td [9], where d is the dipole 
moment of  one H-bond). So, one can write the follow- 
ing macroscopic equation for the motion of ~fi in the 
H-bonded chain: 

d~ ~E 1 
-- = - P x --- (5) 

dt ~SPh 

Notice that Eq. (5) is wholly identical to the 
dynamic equation for magnetization M in ferromag- 
netics [10]: 

dR ~E 
dt = - 3'&¢ x 6 7  (6) 

where E(M) is the energy of  anisotropy and 3' is the 
gyromagnetic coefficient. 

Within the last ten years there has been consider- 
able interest in the phenomenon of  macroscopic 
tunneling of magnetization which takes place in single- 
domain magnetic particles [11-17]. In the spherical 
coordinate system the vector ,~ has the components: 
{M0sin0cos~b, M0sin0sin0, M0cos0}. In this case 
according to Refs. [13,18] Eq. (6) can be derived 
from the action: 

l = J dt [ ~&cosO- E(0, 4~) 1 (7) 

with the Lagrangian of  the system 

L=pgI-E (8) 

where 

q = ~b, p = ~ o s 0  (9) 
3' 

Eq. (6) is equivalent to the equation of  motion 
obtained from the Lagrangian Eq. (8) 

0s in0-  3' OE 
MoOr; (10) 

Ssin0 = 3" OE 
M 0 00 (11) 
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If there are the two or several equilibrium directions 
of  the magnetization vector/~¢ which correspond to 
minima of  the energy then calculation of  the probabil- 
ity of  tunneling transition from one to another equili- 
brium direction can be performed by passing in Eqs. 
(10) and (11) to an imaginary time r = it. Along 
trajectories connecting two minima the action is 
implicit and its extremals should give an expression 
for tunneling rate 2P in the quasiclassical (WKB) 
approximation: 

~' ~ e x p ( i l / h )  (12) 

Analysis based on techniques of spin-coherent states 
[17] has given the possibility of  acquiring tunneling- 
rate prefactors. 

3. Polarization tunneling 

Let us present the polarization along the principal 
axis of the H-bonded chain in the form 

Pz = 2Nd(6z) = 2dSZ (13) 

where the designation 

S: = N ( 6  z) (14) 

means that S z is the z component of  the pseudospin 
of  the whole H-bonded chain. The module of  S is 
equal to 

S = N V/(6-x) 2 + (6Y) 2 + (6z) 2 (15) 

To know the dynamics of  the pseudospin S we need to 
know the mean field (/4tot) as it follows from Eq. (2) 
the Hamiltonian of  the pseudospin system can be 
present [9] as a product HtotS where the field 'vector '  
/1tot has following components: 

(16) 

The first term of  the x component of  the 'vector' /'~tot 
in Eq. (16), i.e. fL does not depend on S. This term can 
be considered as a transversal 'magnetic '  field H 
applied to the chain. All other nonlinear dynamics, 
that is the terms dependent on S one can simulate by 
the term Ksin20 where the anisotropic constant K < 0. 
This type of  model is the most simple but it enables 

investigation of  the nature of  macroscopic tunneling. 
With regard for these circumstances we can put the 
energy of anisotropy in the form 

H2S 2 
E(O, q~) -- :7-/ = {/~tot}S = Ksin20 - HSsinOcos¢~ + - -  

4K 
(17) 

The first term on the right hand side of  Eq. (17) 
corresponds to the z component of  the field 'vector '  
Eq. (16) (we believe that J)j, > 0), the second term 
corresponds to the x component of  the vector Eq. (16) 
(we keep only hf~ because we assume that hf~ >> Y~#, 
Bj/(S~)/2) and the last term in Eq. (17) has been intro- 
duced for convenience (see below). Notice that the 
energy Eq. (17) has the form wholly similar to that 
proposed in Refs. [13,14]. To input the angle 00 by the 
formula 

H S  hfl  
sin00 . . . .  (18) 

2K 2J 

where 

J = - K / S  (19) 

one can rewrite the energy Eq. (17) as 

E(O, q~) = K(s in0-  sin00) 2 + 2KsinOsinOo(1 - cosq~) 

(20) 

It will readily be seen that the energy Eq. (20) has 
two minima: E = 0  at ~ = 0, 0 = 00 and E = 0 at 4~ = 
0, 0 = 7r - 00. Tunneling from the minimum with 
coordinates {0 = 00, ~ = 0} to the minimum with 
coordinates {0 = 7r - 00, q~ = 0} means the substitution 
S z ---* - S z (Fig. 2), i.e. the repolarization of  H-bonded 
chain. 

Z 

Fig. 2. The two possible orientations of the pseudospin (S), which 
characterized the polarization vector of the H-bonded chain. 
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By analogy with Eq. (7), we can introduce the lbl- 
lowing action for the H-bonded chain: 

1 = I dt[hsacosO - E(O, ~b)] (21 ) 

Then instead of  Eqs. (10) and (11) one has 

O = Hsin~ - hf~sin4~ (22) 

Y 
h a  = ~2cot0cos~b - 2 ~ cos0 (23) 

As the tunneling occurs along the trajectory with 
E : 0, we find (from the condition E = 0) 

sin20 + sine00 
cos4~ = (24) 

2sin0sin0o 

Now from (24): 

sin2q~ = - ( s in20- sin200) 2 
4sinZ0sin200 (25) 

that is with the tunneling through the barrier sinq~ is 
pure imaginary. Substituting sin~b from Eq. (25) into 
Eq. (21) and passing on to imaginary time one has 

0 i dO idO=if~sin20-sin20° 
= drr; dr  2sin0sin00 (26) 

(hereinafter the dot over a symbol defines the deriva- 
tive with respect to t). The solution of  Eq. (26) is 

cos0 = - cos00tanh(wbr ) (27) 

where 

wb = ½f~cot00 (28) 

It seen from Eq. (27) that 0 = 0 0  at r---,  - ~ and 
0 = T-00  at r ---* 2,  i.e. the extremal trajectory con- 
nects both minima. 

To substitute cosq~ from Eq. (24) into Eq. (23) one 
gains 

a ~2sin200-sin20 
= - -  2 2 cos0 (29) 

2 sin 00sin 0 

Determining from Eq. (26) dr  by dO with regard for 
Eq. (29) one obtains 

adz  = - cos0 
s~nodO (30) 

Now we can calculate the action along the imaginary 

(i.e. subbarrier) trajectory: 

il = i I dt[hSacosO- E] =h I~ ~ dT-acos0 

[~oo d0COS20 [~/2 cos20 
: - h S  : - 2 h S  (31) 

a0~, sin0 J0o sin0 

that is 

, , :  1 ~ J  (32) 

The solution of Eq. (32) gives the tunneling rate 
Eq. (12) of polarization P in an H-bonded chain. 
Simple expressions are obtained in two limiting 
cases: 1) 0 ~ 0 and 2) 0 ---* 7r/2. In the first case 
sin Oo -~ Oo = hf~/2) << 1 and from Eqs. (12) and 
(32) we derive 

20 ~ Oo s =- (hfUZ3) 2s (33) 

with 

S --~ S: = P J 2 d  (34) 

Hence Eq. (33) transforms into 

20 ~: (hf~/2)) P:/2'l (35) 

In the second case, 00 ~ r/2, it is convenient to intro- 
duce a small parameter 

= 1 -h f~ /2Y  << 1 (36) 

Then sin00 = hf~/2J and cos0o ~ v / ~ ;  putting these 
values into Eqs. (12) and (32) we derive 

20~exp{-~(2Q3/2S}=exp{-~(l-h"/2j)3/2S} 
(37) 

4. Discussion 

Experimental estimation of  the tunneling rate of 
H-bonded chain polarization has been achieved by 
Zundel and co-workers [5,6,19,20]. In line with their 
data 20experim. > 1012 Hz. Of the parameters contained 
in the expression for 2 ° the value P=--Nd, where the 
dipole moment d of  H-bond is known [21] and the 
quantity N of H-bonds in the chain one may estimate 
in principle. 

We can recognize from Eqs. (35) and (37) that 
the tunneling rate depends very significantly on the 
values of  polarization P:  and total pseudospin S. For a 
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short H-bonded  chain these parameters  are not  very 

large. Consequen t ly  the value o f  the tunnel ing rate T 

(Eqs. (35) or  (37)) is not very small  and in this case it 

enables spontaneous repolarization. Thus the Bjer rum 

defects (see, e.g., Ref.  [22]) are not typical in a short 

chain because it can restore itself. E lsewhere  [7] we 

have considered spontaneous fluctuations o f  the short 

chain in bacter iorhodopsin as original polar ized opti- 

cal phonons;  utilizing these specific phonons made it 

possible to study the mot ion o f  protons in the outlet  
channel  of  the protein molecule .  

The  increase o f  P: in Eq. (35) and S in Eq. (37) 

leads to a sharp decrease  o f  tunnel ing  rate 20. As is 

seen f rom Eqs. (13), (14) and (15) P :  and S are pro- 

port ional  to the quant i ty  N of  H-bonds  in the chain. So 

the longer  the H-bonded  chain,  the smal ler  the value 

of  20. That  is why  for the long chain 20 is so small  that 

macroscop ic  tunnel ing o f  polar izat ion must  be sup- 

pressed. For  instance, it should be real ized in the 

LiN2HsSO4 crystal which includes very long H-bonded  
chains [23]. This hard H-bonded chain was used by us 

[22] as a basis for the construction o f  small  protonic 

polaron conduct ivi ty  along the chain. 

With  the variat ion o f  length o f  the H-bonded  chain 

the interact ion be tween  the chain  and its surrounding 

can be changed.  The  anisotropy can inf luence on the 

value  o f  parameters  f~ and 2 ]  which  are included in 

Eqs. (35) and (37) for 20. 

Not ice  that the microscop ic  theory o f  one-  

d imens iona l  proton sublatt ice vibrat ions which inter- 

act with vibrat ions o f  the frame has been studied by 

D a v y d o v  and co-workers  [24,25]. For  these two 

sublatt ices they have suggested the interact ion 

Hami l ton ian  and obta ined the ef fec t  o f  repolar izat ion 

of  H-bonds  in a soli ton model .  That  is, in their  theory 

the chain repolar izat ion occurs  classical ly,  i.e. protons 

cross over  the barriers. They assumed that the rate o f  

repolar izat ion was a constant  but its va lue  was 

not defined. However ,  in the mode l  proposed  in 

Refs.  [24,25] one can pass on to the second quant iza-  

tion and to the pseudospin  formal i sm.  Then  in the 

mean  field approximat ion  for a finite H-bonded  

chain one may der ive  an expl ic i t  form of  the constant  

K conta ined  in our  theory. Notwi ths tanding  our  

approach is essentially wider  than the concept  described 

in Refs. [24,25], because our theory admits the exis- 
tence o f  other  microscopic  mechanisms which can 

influence on the behavior  o f  protons. 
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